

Politechnika Świętokrzyska wydział elektrotechniki, automatyki i informatyki

Załącznik nr 9 do Zarządzenia Rektora Nr 35/19 z dnia 12 czerwca 2019 r.

COURSE DESCRIPTION

Course code	full-time studies		
	part-time-studies		
Course name	Nowoczesne systemy przetwarzania danych		
Course name in English	Modern data processing systems		
Valid from academic year	2022/23		

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	Information Systems
Organizational unit responsible for the course	Katedra Informatyki Stosowanej
Course coordinator	Dr hab inż. Paweł Sitek prof. PŚK
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		General education subject			
Course status		obligatory			
Language		English			
Compoter	full-time studies	Semester VII			
Semester	part-time-studies	Semester VII			
Requirements		Databases			
Exam (YES/NO)		YES			
ECTS		6			

Course form		lecture	classes	laboratory	project	other
Hours per	full-time studies	30		30		
semester	part-time-studies	18		18		

LEARNING RESULTS

Category	Result symbol	Learning results	References to the field of study results
	W01	The student knows the basic concepts and models of data warehouses: ROLAP, MOLAP, HOLAP and BigData	INF_W14 INF_W25
Wiedza	W02	The student has knowledge of the modeling of analytical cubes and the construction of analytical reports and their visualization	INF_W14 INF_W25
	W03	The student has knowledge of BI (Business Intelligence) methods, including basic data mining models	INF_W14 INF_W25
	U01	The student is able to design and implement a data ware- house, prepare data for import, create analytical cubes and generate reports.	INF_U01 INF_U22
Umiejętności	U02	The student is able to use BI tools and methods.	INF_U01 INF_U11
	U03	The student is able to perform analyzes and draw conclu- sions related to data analysis.	INF_U01 INF_U11
Kompetencje	K01	The student knows how to prioritize activities.	INF1_K01
społeczne	K02	The student is able to work in a team, solve tasks together	INF1_K03

PROGRAM CONTENT

Course form	Course content
	Basic Concepts and Methods for Online Analytical Processing (OLAP)
	Presentation of the individual layers of the OLAP model: integration layers, analysis
lecture	layers and reporting layers - basic concepts, methods and techniques as well as im-
	plementations in the selected OLAP system.
	BI methods and techniques, including basic data mining mechanisms.
	Design and implementation of a selected data warehouse and preparation of a data
	set for import.
laboratory	Implementation of the integration layer (data import to HD), implementation of the an-
laboratory	alytical layer (creation of analytical cubes) and implementation of the reporting layer
	(generation of analytical reports).
	Report visualization and implementation of selected data mining methods.

LEARNING RESULTS VERIFICATION METHODS

Result	Learning results verification methods							
symbol	Oral exam	Written exam	Midterm	Project	Report	Others		
W01	Х	Х						
W02	Х	Х						
W03	Х	X						
U01	Х	Х			Х			
U02	Х	Х			Х			
U03	Х	Х			Х			
K01					Х			
K02					X			

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria				
lecture	pass with a grade	Obtaining at least 50% of the points in the written and/or oral exam.				
laboratory	pass with a grade	Average grade for completing tasks in class and reports.				

STUDENT'S VOLUME OF WORK

Bilans punktów ECTS							
_		Student Involvement					
Lp.	Lp. Activity Type		С	Lab	Р	S	unit
1.	Participation in classes according to the schedule	30	0	30	0	0	h
2.	Other (consultations, exams)	2	0	2	0	0	h
3.	Total with the direct assist of an academic teacher		64			h	
4.	Number of ECTS, that students obtains with the direct assist of an academic teacher		3,2			ECTS	
5	Hours of unassisted student work	56				h	
6	Number of ECTS that student obtains working unassisted	2,8			ECTS		
7	Practical classes volume of work	32			h		
8	Number of ECTS obtained by student at practi- cal classes	3,2			ECTS		
9	Total student's volume of work expressed in hours	120			h		
10	ECTS	6			ECTS		
10							

REFERENCES

- 1. Gospodarek T.: Systemy ERP. Modelowanie, projektowanie, wdrażanie, Helion 2015.
- 2. Landvater D.V., Gray C.D.: MRP II Standard System, Oliver Wight Publications, 1989.
- 3. Banaszak Z., Kłos Ś., Mleczko J. : ZINTEGROWANE SYSTEMY ZARZĄDZANIA, PWE ,2016
- 4. Skrzypek J., Kukuła K., Jędrzejczyk Z.: Badania operacyjne w przykładach i zadaniach, PWN, 2019.

Uwaga: wykaz literatury winien uwzględniać aktualne i dostępne publikacje