

Politechnika Świętokrzyska

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Załącznik nr 9 do Zarządzenia Rektora PŚk Nr 35/19 w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course code	full-time studies
Course code	part-time-studies
Course name	Analityka Big Data
Course name in English	Big Data & Analytics
Valid from academic year	2022/23

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	Information and communication technology
Organizational unit responsible for the course	Katedra Systemów Informatycznych
Course coordinator	dr hab. inż. Roman Deniziak, prof. PŚk mgr inż. Małgorzata Płaza
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		Speciality		
Course status		obligatory		
Language		English		
Semester	full-time studies	Semester VI		
Semester	part-time-studies	Semester VI		
Requirements		ernet of Things, Databases, Scripting Languages		
Exam (YES/NO)		YES		
ECTS		4		

Course form	ı	lecture	classes	laboratory	project	other
Hours per	full-time studies	30		30		
semester	part-time-studies	18		18		

LEARNING RESULTS

Category	Category Result Learning Results					
	W01	Students know and understand the solutions of technol- ogies used in the area of Big Data.	INF1_W33			
Knowledge	W02	INF1_W33				
	W03	W03 Students know and understand how data engineering shapes Big Data analytics issues.				
	U01	Students are able to analyze data using basic statistical techniques and methods from Big Data analytics.	INF1_U33			
Skills	U02	Students are able to acquire data using IoT techniques and databases.	INF1_U33			
	U03	Students are able to visualize and process the collected data.				
Social	K01 Students are able to assess the importance of Big Data and their impact on society.		INF1_K1 INF1_K2			
competence	K02	The student is prepared to work in a group in the field involving the creation of Big Data solutions.	INF1_K1 INF1_K2			

COURSE CONTENT

Course Form	Content
lecture	 Introduction to Big Data technology Hadoop technologies. MapReduce algorithm. HDFS distributed file system. NoSQL database models. Python programming language in Big Data analysis. Methods of data analysis. Problems encountered in Big Data techniques. Methods used in inference analysis used in Big Data. Supervised learning part.1. Supervised learning part.2 Unsupervised learning part.2 Data visualization and processing in Big Data techniques. Big Data Architecture. Big Data processing using cloud computing part.2 Directions of development of Big Data technologies.

	1. Limitations of popular spreadsheets in data analysis.
	2. Use of the HDFS distributed file system and practical exercises.
	3. MapReduce algorithm - practical exercises.
	4. Use of PL-App application running on Raspberry Pi platform in data
	analysis. Configuration, principle of operation.
	5. Python programming language in Big Data.
	6. Python and SQLite
	7. Big data analytics - real-time data generation.
laboratory	8. Jupyter notebook - data retrieval and processing.
	9. Jupyter notebook - advanced exercises.
	10. Descriptive statistics in Python language.
	11. Python in correlation analysis.
	12. Linear regression in Python language.
	13. Classification, decision trees in Phyton language.
	14. Data visualization in Big Data techniques.
	15. Raspberry Pi camera configuration, video data analysis. Image ana-
	lytics methods - smile detection.

LEARNING RESULTS VERIFICATION METHODS

Result	Learning results verification methods								
Symbol	Oral Exam	Written Exam	Midterm	Project	Report	Other			
W01		x							
W02		x							
W03		x							
U01			Х						
U02			Х						
U03			х						
K01		x	Х						
K02		х	Х						

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria
lecture	pass with a grade	Obtaining at least 50% of the points during the exam.
laboratory	pass with a grade	Obtaining at least 50% of the points from the pass tests during the laboratory classes.

STUDENT'S VOLUME OF WORK

	ECTS Balance											
No.	Activity Type	Student Involvement								Unit		
NO.		f	ull-ti	me st	udie	5	р	art-ti	me-s	tudie	s	
1.	1 Participation in classes according	Lec	С	Lab	Ρ	S	Lec	С	Lab	Ρ	S	h
1.	to the schedule	30		30			18		18			11
2.	Other (consultations, exams)	4		2			4		2			h
3.	Total with the direct assist of an academic teacher	66 42			h							

4.	Number of ECTS, that students obtains with the direct assist of an academic teacher	2,64	1,68	ECTS
5.	Hours of unassisted student work	34	58	h
6.	Number of ECTS that student obtains working unassisted	1,36	2,32	ECTS
7.	Practical classes volume of work	30	18	h
8.	Number of ECTS obtained by student at practical classes			ECTS
9.	Total student's volume of work expressed in hours	100	100	h
10.	ECTS		4	

BIBLIOGRAPHY

- Materials on the NetAcad platform available for students during laboratory.
 Nathan Marz, James Warren, Big Data: Principles and best practices of scalable realtime data systems