

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Załącznik nr 9 do Zarządzenia Rektora PŚk Nr 35/19

w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course code	full-time studies E-I-EN-03-s3						
Course code	part-time-studies						
Course name	Systemy dynamiczne						
Course name in English	Dynamic Systems						
Valid from academic year	2022/23						

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	All specializations / Information systems / Computer graphics / Information and communica- tion technology
Organizational unit responsible for the course	The Department of Applied Computer Science
Course coordinator	Katarzyna Rutczyńska-Wdowiak, PhD, Eng.
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		Major					
Course status		Compulsory					
Language		English					
Somostor	full-time studies	111					
Semester	part-time-studies	IV					
Requirements		Mathematics					
Exam (YES/NO)		No					
ECTS		2					

Course form		lecture	classes	laboratory	project	other
Hours per	full-time studies	15		15		
semester	part-time-studies	9		9		

LEARNING RESULTS

Category	Result Symbol	Learning Results	References to the field of study results				
	W01	A student has knowledge as regards theoretical funda- mentals of continuous and discrete dynamical systems.	INF_W16				
Knowledge	W02	A student has knowledge as regards a mathematical description and state space of continuous and discrete dynamical systems.	INF_W16				
	W03	A student has knowledge as regards the methods of examining the stability of continuous and discrete dy- namical systems.	INF_W16				
	W04	W04 A student has knowledge of classical and numerical methods of dynamic systems control.					
Skills	U01	A student can: analyse the phenomena taking place in dynamical systems, describe them with mathematical relationships, determine time waveforms of basic values of these systems, and make appropriate calculations.	INF_U16				
	U02	A student can: apply appropriate analytical and simula- tion methods to solve the issue of dynamical systems analysis, analyse the results and draw appropriate con- clusions.	INF_U16				
Social	K01	A student is aware of the impact of technological solu- tions on the environment and understands the non- technical aspects and effects of these activities.	INF_K1 INF_K2				
competence	K02	A student is aware of rapid progress of knowledge (as regards the methods and technologies of theoretical and simulation analysis) and understands the necessity of continuous education.	INF_K1 INF_K2				

COURSE CONTENT

Course Form	Content
	 Theoretical fundamentals of continuous dynamical systems. Theoretical fundamentals of discrete dynamical systems. Description methods of continuous and discrete systems in state space. Algebraic criteria of stability.
lecture	 Bellman dynamic programming in dynamic systems. Selected methods of artificial intelligence used in control problems (part 1). Selected methods of artificial intelligence used in control problems (part 2). Classical and numerical methods in control problems. Obtaining a credit for the lectures.
laboratory	 Introduction. Description of a continuous system in the state space. Analysis of stability. Bellman dynamic programming in dynamic systems. Modeling a selected control problem with the use of a genetic or evolutionary algorithm.
laboratory	 Selection of control parameters of the genetic / evolutionary algorithm in the control problem of dynamic systems. Selected numerical methods in a control problem (part 1). Selected numerical methods in a control problem (part 2). Obtaining a credit for laboratory classes

Result Symbol	Learning results verification methods									
	Oral Exam	Written Exam	Midterm	Project	Report	Other				
W01			Х							
W02			Х							
W03			Х							
W04			Х							
U01			Х		Х					
U02			Х		Х					
K01			Х		X					
K02			Х		X					

LEARNING RESULTS VERIFICATION METHODS

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria
lecture	obtaining a credit for the lectures	Obtaining at least 50% of test points during the class.
laboratory	obtaining a credit for laboratory classes	Obtaining at least 50% of the points from tests and reports during classes

STUDENT'S VOLUME OF WORK

ECTS Balance												
No		Student Involvement									Unit	
NO.		f	full-time studies				part-time-studies					
1	Participation in classes according	Lec	С	Lab	Ρ	S	Lec	С	Lab	Ρ	S	h
	to the schedule	15		15			9		9			
2.	Other (consultations, exams)	4		4			2		2			h
3.	Total with the direct assist of an academic teacher			38				22				
4.	Number of ECTS, that students obtains with the direct assist of an academic teacher		1,52						0,88			ECTS
5.	Hours of unassisted student work		12					28				h
6.	Number of ECTS that student obtains working unassisted		0,48					1,12				ECTS
7.	Practical classes volume of work		15						9			h
8.	Number of ECTS obtained by student at practical classes	0,79					0,82					ECTS
9.	Total student's volume of work expressed in hours		50						50			h
10.	ECTS	2								ECTS		

BIBLIOGRAPHY

- 1. Stefański T .: Theory of control, vol. I, Linear systems. Script of Kielce University of Technology, No. 367, Kielce 2002.
- 2. Stefański T .: Theory of control, vol. II. Script of Kielce University of Technology, No. 365, Kielce 2002.
- 3. Michalewicz Zb .: Genetic algorithms + data structures = Evolutionary programs. Springer-Verlag and Heidelberg GmbH&Co. KG, 2011.
- 4. Rutkowski L .: Methods and techniques of artificial intelligence. Polish Scientific Publishers PWN 2009.