

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Załącznik nr 9 do Zarządzenia Rektora PŚk Nr 35/19 w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course code	full-time studies				
Course code	part-time-studies				
Course name	Zaawansowane techniki bazodanowe				
Course name in English	Advanced database techniques				
Valid from academic year	2022/23				

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	All specializations
Organizational unit responsible for the course	Katedra Informatyki Stosowanej
Course coordinator	Dr hab inż. Paweł Sitek prof. PŚK
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		General education subject					
Course status		Obligatory					
Language		English					
Semester	full-time studies	Semester IV					
Semester	part-time-studies	Semester IV					
Requirements		Databases					
Exam (YES/NO)		NO					
ECTS		4					

Course form		lecture	classes	laboratory	project	other
Hours per	full-time studies	30		15	15	
semester	part-time-studies	18		9	9	

LEARNING RESULTS

Category	Result symbol	Learning results	References to the field of study results		
	W01	Knows and understands the basic concepts of databases, advanced database models - in particular: data warehouses.	INF_W12		
Knowledge	W02	Knows and understands the rules of modeling and designing advanced databases.	INF_W12		
0	W03	Knows and understands extensions to the standard SQL.	INF_W12		
	W04	INF_W12			
	U01	Can design data warehouses, XML database, NoSQL, NewSQL, etc., multi-layer interface.	INF_U12		
Skills	U02	Can implement a database based on a project in SQL or other environment.	INF_U12		
	U03	Can construct complex database queries, views and program blocks, scripts, import and export data, etc.	INF_U12		
Social	K01	Ready to prioritize actions.	INF_K1		
competence	betence K02 Ready to work in a team, solve tasks together.				

PROGRAM CONTENT

Course form	Course content							
lecture	 Introduction to advanced databases. Analytical databases - data warehouses. ROLAP model - design, implementation, applications. Other models: MOLAP, HOLAP. Extensions of the SQL language in application to the data warehouse. XML databases - design, implementation, applications. 							
	 Models and methods of designing new generation databases: NoSQL, NewSQL, and Big data. 							
laboratory	 Design of an exemplary data warehouse. The use of the extended SQL language to build complex queries and obtain data from the data warehouse. Designing a new generation database, e.g. NoSQL. 							
project	Students perform tasks in a multi-person team. Its subject is the design of the data warehouse schema and its transformation to the ROLAP model. Designing a set of analyzes for the planned data warehouse. Implementation of a data warehouse (creation of a schema, data supply, implementation of analytical queries, snapshots). Design and implementation NoSQL database.							

LEARNING RESULTS VERIFICATION METHODS

Result symbol	Learning results verification methods									
	Oral exam	Written exam	Midterm	Project	Report	Others				
W01			Х	Х						
W04			Х	Х						
W03			Х	Х						
W04			Х	Х						
U01				Х	Х					
U02				Х	Х					
U03				Х	Х					
K01				Х	Х					
K02				Х	Х					

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria
lecture	pass with a grade	Obtaining at least 50% of the points in the written test
laboratory	pass with a grade	Average grade for completing tasks in class and reports.
project	pass with a grade	Obtaining at least 50% points for the developed software, its documentation and defense of the project.

STUDENT'S VOLUME OF WORK

ECTS points balance														
No			Student Involvement											
INO					-time studies				part-time-studies					
1.	Participation in classes according to	Lec	С	Lab	Ρ	S	Lec	С	Lab	Ρ	S	h		
1.	the schedule	30		15	1 5		18		9	9		n		
2.	Other (consultations, exams)	2		1	1		1		1	1		h		
3.	Total with the direct assist of an academic teacher	64					38					h		
4.	Number of ECTS, that students obtains with the direct assist of an academic teacher	2,56				1,52					ECTS			
5.	Hours of unassisted student work		36				62					h		
6.	Number of ECTS that student obtains working unassisted		1,44					2,48						
7.	Practical classes volume of work			30			18					h		
8.	Number of ECTS obtained by student at practical classes	1,20					0,72					ECTS		
9.	Total student's volume of work expressed in hours	100					100				h			
10.	ECTS		4								ECTS			

REFERENCES

- 1. Date C. J.: Wprowadzenie do systemów baz danych, WNT, Warszawa 2000.
- 2. Królikowski Z.: Hurtownie danych logiczne i fizyczne struktury danych. Wydawnictwo Politechniki Poznańskiej, 2007, ISBN 978-83-7143-310-8
- 3. Agnieszka Chodkowska-Gyurics: Hurtownie danych. Teoria i praktyka, Wydawnictwo Naukowe PWN, 2019.
- 4. R. Wrembel, B. Bębel, Oracle Projektowanie rozproszonych baz danych, HELION Publisher, 2003.
- 5. M. Jarke, M. Lenzerini, Y. Vassiliou, P. Vassiliadis, Fundamentals of Data Warehouses, Springer-Verlag, 2003.
- 6. Guy Harrison, NoSQL, NewSQL I BigDATA, Bazy danych następnej generacji, Helion, 2019.