Politechnika Świętokrzyska

WYDZIAL ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI
Załącznik nr 9
do Zarządzenia Rektora PŚk Nr 35/19
w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course code	full-time studies	
	part-time-studies	
Course name	Matematyka 3	
Course name in English	Mathematics 3	
Valid from academic year	$2022 / 23$	

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	$\mathbf{1}^{\text {st }}$ degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	All specializations
Organizational unit responsible for the course	Department of Applied Informatics
Course coordinator	Katarzyna Poczęta, PhD
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		Major
Course status	Mandatory	
Language	English	
Semester	full-time studies	$\mathbf{3}^{\text {rd }}$ semester
	part-time-studies	$\mathbf{3}^{\text {rd }}$ semester
Requirements	Mathematics 1,2	
Exam (YES/NO)	Yes	
ECTS	$\mathbf{5}$	

Course form		lecture	classes	laboratory	project	other
Hours per semester	full-time studies	30	30			
	part-time-studies	18	18			

LEARNING RESULTS

Category	Result Symbol	Learning Results	References to the field of study results
Knowledge	W01	Students know and understand selected probabilistic methods and the basics of mathematical statistics	INF_W3
Skills	U01	Students are able to calculate the probability of events and basic statistical characteristics	INF_U3
Social competence	K01	Students are ready to recognize the importance of the learned methods in solving engineering problems	INF_K1, INF_K2

COURSE CONTENT

Course Form	\quad Content
	1. Fundamentals of probability theory. Probabilistic models. Sample space. Events. Combinatorics. Classical definition of probability. Geometric probability. 2. Independence. Conditional probability. Independence of two events. Independence of collection of events. Conditional prob- ability. 3. Bayes' theorem. Bernoulli trials. Total probability. Bayes' theorem. Naive Bayes classifier. Bernoulli trials. 4. Introduction to random variables. Random variable definition. Types of random variables. Probability density function. Discrete random variables. Continuous random variables. Cumulative distribution function. Moments of discrete random variables. Popular distributions. Bivariate ran- dom variables. Covariance of bivariate random variables. Correlation coefficient. Lin- ear regression. 5. Weak laws of large numbers. Central limit theorems. Markov's inequality. Chebyshev's inequality. De Moivre-Laplace theorem. Lindeberg- Levy theorem. 6. Point estimation. Interval estimation. Methods for point estimation. Criteria to evaluate the goodness of an estimator. Con- fidence Interval for Population Mean. Confidence Interval for Population Variance. Confidence Interval for Population Standard Deviation 7. Test of Statistical Hypotheses. Hypothesis tests. Critical region. Methods of evaluating tests. Hypothesis testing al- gorithm. 8. Random numbers generators. Computer simulations. Linear congruential generator. Examples of implementations. Samples of discrete distributions. Samples of continuous distributions.
	1. Fundamentals of probability theory. Probabilistic models. Sample space. Events. Combinatorics. Classical definition of probability. Geometric probability. 2. Independence. Conditional probability. Independence of two events. Independence of collection of events. Conditional prob- ability. 3. Bayes' theorem. Bernoulli trials. Total probability. Bayes' theorem. Bernoulli trials. 4. Introduction to random variables. Random variable definition. Types of random variables. Probability density function. Discrete random variables. Continuous random variables. Cumulative distribution function. Moments of discrete random variables. Popular distributions. Bivariate ran- dom variables. Covariance of bivariate random variables. Correlation coefficient. Lin- ear regression. 5. Weak laws of large numbers. Central limit theorems. Markov's inequality. Chebyshev's inequality. De Moivre-Laplace theorem. Lindeberg-

	Levy theorem.
6. Point estimation. Interval estimation.	
Methods for point estimation. Criteria to evaluate the goodness of an estimator. Con- fidence Interval for Population Mean. Confidence Interval for Population Variance. Confidence Interval for Population Standard Deviation 7. Test of Statistical Hypotheses. Hypothesis tests. Critical region. Methods of evaluating tests. Hypothesis testing al- gorithm.	

LEARNING RESULTS VERIFICATION METHODS

Result Symbol	Learning results verification methods					
	Oral Exam	Written Exam	Midterm	Project	Report	Other
W01		X	X			
U01		X	X			
K01		X	X			

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria
lecture	Passing grade	The student should obtain at least 50\% points from written
exam.		

STUDENT'S VOLUME OF WORK

ECTS Balance												
No.	Activity Type	Student Involvement										Unit
		full-time studies					part-time-studies					
1.	Participation in classes according to the schedule	Lec	C	Lab	P	S	Lec	C	Lab	P	S	h
		30	30				18	18				
2.	Other (consultations, exams)	2	2				2	2				h
3.	Total with the direct assist of an academic teacher	64					40					h
4.	Number of ECTS, that students obtains with the direct assist of an academic teacher	2,56					1,6					ECTS
5.	Hours of unassisted student work	61					85					h
6.	Number of ECTS that student obtains working unassisted	2,44					3,4					ECTS
7.	Practical classes volume of work	30					18					h
8.	Number of ECTS obtained by student at practical classes	1,20					0,72					ECTS
9.	Total student's volume of work expressed in hours	125					125					h
10.	ECTS	5										ECTS

BIBLIOGRAPHY

1. Ash R.B. BASIC PROBABILITY THEORY, DOVER PUBLICATIONS, INC. Mineola, New York, 2008.
2. Hausner M.: General Theory of Finite Probability Spaces. In: Elementary Probability Theory Springer, Boston, MA, 1995.
3. Jastriebow A., Łaskawski M., Tuszyński L.: Wprowadzenie do metod probabilistycznych (Introduction to Probabilistic Methods). Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2009.
4. Prasanna Sahoo: PROBABILITY AND MATHEMATICAL STATISTICS. Department of Mathematics University of Louisville Louisville, KY 40292 USA, 2013.
