

Politechnika Świętokrzyska

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Załącznik nr 9 do Zarządzenia Rektora PŚk Nr 35/19 w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course code	full-time studies				
	part-time-studies				
Course name	Matematyka 3				
Course name in English	Mathematics 3				
Valid from academic year	2022/23				

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	All specializations
Organizational unit responsible for the course	Department of Applied Informatics
Course coordinator	Katarzyna Poczęta, PhD
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		Major				
Course status		Mandatory				
Language		English				
Somostor	full-time studies	3 rd semester				
Semester	part-time-studies	3 rd semester				
Requirements		Mathematics 1,2				
Exam (YES/NO)		Yes				
ECTS		5				

Course form		lecture	classes	laboratory	project	other
Hours per	full-time studies	30	30			
semester	part-time-studies	18	18			

LEARNING RESULTS

Category	Result Symbol	Learning Results	References to the field of study results
Knowledge	W01	Students know and understand selected probabilistic methods and the basics of mathematical statistics	INF_W3
Skills	Skills U01 Students are able to calculate the probability of events and basic statistical characteristics		INF_U3
Social competence	K01	Students are ready to recognize the importance of the learned methods in solving engineering problems	INF_K1, INF_K2

COURSE CONTENT

Course Form	Content
lecture	 Fundamentals of probability theory. Probabilistic models. Sample space. Events. Combinatorics. Classical definition of probability. Geometric probability. Independence. Conditional probability. Independence of two events. Independence of collection of events. Conditional prob- ability. Bayes' theorem. Bernoulli trials. Total probability. Bayes' theorem. Naive Bayes classifier. Bernoulli trials. Introduction to random variables. Random variable definition. Types of random variables. Probability density function. Discrete random variables. Continuous random variables. Cumulative distribution function. Moments of discrete random variables. Popular distributions. Bivariate ran- dom variables. Covariance of bivariate random variables. Correlation coefficient. Lin- ear regression. Weak laws of large numbers. Central limit theorems. Markov's inequality. Chebyshev's inequality. De Moivre-Laplace theorem. Lindeberg- Levy theorem. Point estimation. Interval estimation. Methods for point estimation. Criteria to evaluate the goodness of an estimator. Con- fidence Interval for Population Mean. Confidence Interval for Population Variance. Confidence Interval for Population Standard Deviation Test of Statistical Hypotheses. Hypothesis tests. Critical region. Methods of evaluating tests. Hypothesis testing al- gorithm. Random numbers generators. Computer simulations. Linear congruential generator. Examples of implementations. Samples of discrete distributions. Samples of continuous distributions.
classes	 Fundamentals of probability theory. Probabilistic models. Sample space. Events. Combinatorics. Classical definition of probability. Geometric probability. Independence. Conditional probability. Independence of two events. Independence of collection of events. Conditional probability. Bayes' theorem. Bernoulli trials. Total probability. Bayes' theorem. Bernoulli trials. Introduction to random variables. Random variable definition. Types of random variables. Probability density function. Discrete random variables. Continuous random variables. Cumulative distribution function. Moments of discrete random variables. Popular distributions. Bivariate random variables. Covariance of bivariate random variables. Correlation coefficient. Linear regression. Weak laws of large numbers. Central limit theorems. Markov's inequality. Chebyshev's inequality. De Moivre-Laplace theorem. Lindeberg-

Levy theorem.
6. Point estimation. Interval estimation.
Methods for point estimation. Criteria to evaluate the goodness of an estimator. Con-
fidence Interval for Population Mean. Confidence Interval for Population Variance.
Confidence Interval for Population Standard Deviation
7. Test of Statistical Hypotheses.
Hypothesis tests. Critical region. Methods of evaluating tests. Hypothesis testing al-
gorithm.

LEARNING RESULTS VERIFICATION METHODS

Result		Lear	ning results v	erification met	hods	
Symbol	Oral Exam	Written Exam	Midterm	Project	Report	Other
W01		Х	Х			
U01		Х	Х			
K01		Х	Х			

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria
lecture	Passing grade	The student should obtain at least 50% points from written exam.
classes	Passing grade	The student should obtain at least 50% points from midterm tests.

STUDENT'S VOLUME OF WORK

	ECTS Balance											
No.		Student Involvement									Unit	
NO.	Activity Type	f	ull-ti	me st	udie	5	р	art-ti	me-s	tudie	s	
1.	Participation in classes according	Lec	С	Lab	Ρ	S	Lec	С	Lab	Р	S	h
1.	to the schedule	30	30				18	18				11
2.	Other (consultations, exams)	2	2				2	2				h
3.	Total with the direct assist of an academic teacher	64							40			h
4.	Number of ECTS, that students obtains with the direct assist of an academic teacher	2,56				1,6					ECTS	
5.	Hours of unassisted student work		61				85				h	
6.	Number of ECTS that student obtains working unassisted			2,44			3,4				ECTS	
7.	Practical classes volume of work		30					18				h
8.	Number of ECTS obtained by student at practical classes	1,20				0,72					ECTS	
9.	Total student's volume of work expressed in hours	125					125					h
10.	ECTS					ł	5					ECTS

BIBLIOGRAPHY

- 1. Ash R.B. BASIC PROBABILITY THEORY, DOVER PUBLICATIONS, INC. Mineola, New York, 2008.
- 2. Hausner M.: General Theory of Finite Probability Spaces. In: Elementary Probability Theory. Springer, Boston, MA, 1995.
- 3. Jastriebow A., Łaskawski M., Tuszyński L.: Wprowadzenie do metod probabilistycznych (Introduction to Probabilistic Methods). Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2009.
- 4. Prasanna Sahoo: PROBABILITY AND MATHEMATICAL STATISTICS. Department of Mathematics University of Louisville Louisville, KY 40292 USA, 2013.