

Politechnika Świętokrzyska

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Załącznik nr 9 do Zarządzenia Rektora PŚk Nr 35/19 w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course ande	full-time studies	
Course code	part-time-studies	
Course name	Teoria układów logicznych	I
Course name in English	Theory of logic systems	
Valid from academic year	2022/23	

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	All specializations
Organizational unit responsible for the course	Computer Science, Electronics and Electrical Engi- neering Department
Course coordinator	Adam Głuszek, Ph.D. Eng.
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., D.Sc., Ph.D.

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		Field of study course					
Course status		Obligatory					
Language		English					
O	full-time studies	1st semester					
Semester	part-time-studies	1st semester					
Requirements		-					
Exam (YES/NO)		Yes					
ECTS		5					

Course form	1	lecture	classes	laboratory	project	other
Hours per	full-time studies	30	15	15	-	-
semester	part-time-studies	18	9	9	-	-

LEARNING RESULTS

Category	Result Symbol	Learning Results	References to the field of study results		
	W01	the student knows and understands fundamental con- cepts from the area of digital electronics (digital signal, Boolean algebra, switching function, functionally com- plete system, finite state machine etc.)	INF1_W08		
Knowledge	W02	the student knows and understands internal structure and functioning of the basic digital devices (logic gates, flip-flops) and digital functional blocks	INF1_W08		
	W03	the student knows and understands basic methods of combinational and sequential systems synthesis	INF1_W08		
	U01	the student is able to analyse the structure and function- ing of the combinational and sequential systems	INF1_U08		
Skills	U02	the student can design simple combinational and se- quential circuits	INF1_U08		
	U03	the student can use digital circuits designing/simulating tools	INF1_U08		
Social	K01	the student is ready to develop his knowledge by inde- pendent study and searching for suitable sources	INF1_K01 INF1_K02		
competence	K02	student is ready to cooperate in the team for realization of the established schedule	INF1_K01 INF1_K02		

COURSE CONTENT

Course Form	Content
	1. Fundamental concepts from the area of digital electronics (digital signal, Boolean algebra, switching function, functionally complete system, finite state machine etc.)
	2. Basic logic devices – gates and flip-flops. Digital functional blocks (multiplexer, demultiplexer, counter, register, arithmetic blocks, memory, etc.).
lecture	3. Analysing and designing of combinational logic circuits. Representation of the logic function. Minimization of the switching function (Karnaugh maps). Designing of the combinational circuits with the use of the logic gates. Iterative circuits.
	4. Analysing and designing of synchronous sequential logic circuits. Moore machine. Mealy machine. Representation of the finite state machine – state diagram, state/output table. Designing of the synchronous sequential circuits with the use of gates and flip-flops (counters, parity checking, serial adder, serial comparator, se- quence detectors, simple control systems etc.).
	5. Realization of the modern digital circuits. Introduction to programmable logic de- vices.
	1. Using of the basic digital devices – logic gates and flip-flops.
classes	2. Minimization of the switching function with the use of Karnaugh maps.
	3. Designing of the combinational logic circuits with the use of logic gates.

	4. Designing of the synchronous sequential logic circuits with the use of gates and flip-flops (counters, serial parity checking, sequence detectors, simple control systems etc.).
laboratory	1. Introduction to the digital circuit designing/simulation software.
	2. Simulations of the basic digital devices – gates and flip-flops.
	3. Simulations of the digital functional blocks.
	4. Designing of the combinational logic circuits – simulations of the designed circuits.
	5. Designing of the synchronous sequential logic circuits – simulations of the de- signed circuits.

LEARNING RESULTS VERIFICATION METHODS

Result Symbol	Learning results verification methods									
	Oral Exam	Written Exam	Midterm	Project	Report	Other				
W01		Х	Х							
W02		Х	Х							
W03		Х	Х							
U01		Х	Х			Х				
U02		Х	Х			Х				
U03		Х	Х		Х	Х				
K01					Х	Х				
K02					Х	Х				

ASSESSMENT FORMS AND CRITERIA

Course Form	Course Assessment Form Assessment Criteria						
lecture	examination	Obtaining at least 50% of exam points					
classes	final test	Obtaining at least 50% of final test points					
laboratory	mid-term/final tests	Obtaining at least 50% of mid-term/final tests points					

STUDENT'S VOLUME OF WORK

ECTS Balance												
No			Student Involvement									Unit
NO.		f	ull-ti	me st	udies	5	part-time-studies				s	
1	Participation in classes according	Lec	С	Lab	Ρ	S	Lec	С	Lab	Ρ	S	h
1.	to the schedule	30	15	15			18	9	9			11
2.	Other (consultations, exams)	2	1	1			2	1	1			h
3.	Total with the direct assist of an academic teacher			64					40			h
4.	Number of ECTS, that students obtains with the direct assist of an academic teacher	2,56 1,6							ECTS			
5.	Hours of unassisted student work	61					85				h	
6.	Number of ECTS that student obtains working unassisted	2,44 3,4						ECTS				
7.	Practical classes volume of work	30 18							h			
8.	Number of ECTS obtained by student at practical classes	1,20						0,72			ECTS	
9.	Total student's volume of work expressed in hours	125 125									h	
10.	ECTS					ł	5					ECTS

BIBLIOGRAPHY

- 1. Donzellini G., Oneto L., Ponta D., Anguita D.: "Introduction to Digital Systems Design", Springer, 2019.
- LaMeres B.J.: "Introduction to Logic Circuits and Logic Design with Verilog", Springer, 2019.
 Wakerly J.F.: "Digital Design: Principles and Practices", Prentice Hall, 1990.
 Horowitz P., Hill W.: "The Art of Electronics", Cambridge University Press, 2015.