

Politechnika Świętokrzyska

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI

Załącznik nr 9 do Zarządzenia Rektora PŚk Nr 35/19 w brzmieniu ustalonym Zarządzeniem Nr 12/22

COURSE DESCRIPTION

Course code	full-time studies				
	part-time-studies				
Course name	Podstawy Programowania	1			
Course name in English	Fundamentals of Program	ming 1			
Valid from academic year	2022/23				

PLACEMENT IN THE TEACHING PROGRAM

Field of study	Computer Science
Level of education	1 st degree
Studies profile	General
Form and method of teaching classes	Full-time and part-time studies
Specialization	All specializations / Information systems / Computer graphics / Information and communication technology
Organizational unit responsible for the course	Department of Information Systems
Course coordinator	Arkadiusz Chrobot, PhD
Approved by	Dean of the Faculty of Electrical Engineering, Automatic Control and Computer Science Roman Deniziak, KUT prof., DSc, PhD

GENERAL CHARACTERISTIC OF THE COURSE

Course affiliation		Introductory Course					
Course status		Mandatory					
Language		English					
Somostor	full-time studies	1 st semester					
Semester	part-time-studies	1 st semester					
Requirements		No requirements					
Exam (YES/NO)		NO					
ECTS		5					

Course form		lecture	classes	laboratory	project	other
Hours per	full-time studies	30		30		
semester	part-time-studies	18		18		

LEARNING RESULTS

Category	Result Symbol	Learning Results	References to the field of study results
	W01	The student knows the concepts of imperative programming, procedural programming and algorithm.	INF1_W07
Knowledge	W02	The student knows the basic elements of a high-level programming language syntax (such as conditional and loop statements).	INF1_W07
	W03	The student knows basic data types, data structures and selected algorithms that use them.	INF1_W07
	U01	The student is able to create basic program using the imperative programming paradigm.	INF1_U07
Skillo	U02	The student is able to apply basic elements of high-level programming language syntax in a program.	INF1_U07
SKIIIS	U03	The student is able to apply basic data types and data structures in a program.	INF1_U07
	U04	INF1_U07	
Social competence	K01	K01 The student understands the need of constant development of her/his programming skills.	
	K02	The student understands the risks resulting from lack of adequate sills of people who create software individually or in a team.	INF1_K2

COURSE CONTENT

Course Form	Content
lecture	 Introduction – concepts of imperative programing, procedural programming, algorithm; examples of algorithms; basic data types; variables and constants. Initialization of variables, operators and expressions, basic input/output. Control statements (conditional statement, switch statement, loops). Functions, local variables, parameters. Enumerations and linear arrays, processing of linear arrays. Strings, processing of strings. Multidimensional arrays, processing of multidimensional arrays. Structures, unions and bit fields. Files, processing of files. Libraries and macros.
laboratory	 Introduction - the Integrated Development Environment. Basic concepts: variables, constants, data types, basic input/output, operators, expressions. Control statements. Functions. Enumerations and linear arrays. Strings. Multidimensional arrays. Structures and unions. Files. Libraries and macros.

Result Symbol	Learning results verification methods										
	Oral Exam	Written Exam	Midterm	Project	Report	Other					
W01			Х			Х					
W02			Х			Х					
W03			Х			Х					
U01			Х			Х					
U02			Х			Х					
U03			Х			Х					
U04			Х			Х					
K01			X			X					
K02			X			X					

LEARNING RESULTS VERIFICATION METHODS

ASSESSMENT FORMS AND CRITERIA

Course Form	Assessment Form	Assessment Criteria
lecture	Passing grade	The student should obtain at least 50% of points at the final test.
laboratory	Passing grade	The student should obtain at least 50% of points from short tests and midterms.

STUDENT'S VOLUME OF WORK

ECTS Balance												
No		Student Involvement										Unit
NO.		f	full-time studies				part-time-studies					
1	Participation in classes according	Lec	С	Lab	Ρ	S	Lec	С	Lab	Ρ	S	h
1.	to the schedule	30		30			18		18			
2.	Other (consultations, exams)	2		2			2		2			h
3.	Total with the direct assist of an academic teacher	64						40				
4.	Number of ECTS, that student obtains with the direct assist of an academic teacher	2,56					1,6				ECTS	
5.	Hours of unassisted student work		61					85				h
6.	Number of ECTS that student obtains working unassisted	2,44						3,4				ECTS
7.	Practical classes volume of work	30 18								h		
8.	Number of ECTS obtained by student at practical classes	1,25 0,72							ECTS			
9.	Total student's volume of work expressed in hours	125 125						h				
10.	ECTS	5								ECTS		

BIBLIOGRAPHY

- 1. Brian W. Kernighan, Denis M. Ritchie, "The C Programming Language", Second Edition, Prentice-Hall Inc., Upper Saddle River, 2012
- 2. Stephen Prata, "C Primer Plus", 6th Edition, Addison-Wesley, Upper Saddle River, 2015
- 3. Robert Sedgewick, Kevin Wayne, "Algorithms", 4th edition, Addison-Wesley Inc., Reading, Massachusetts, 2011
- 4. Jon Bentley, "Programming Pearls" Addison-Wesley, Inc., Upper Saddle River, 2000
- 5. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Addison-Wesley Inc., Upper Saddle River, 1987
- 6. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", 3rd edition, MIT Press, Cambridge US, 2009
- 7. Donald E. Knuth, "The Art of Programming", Vol. 1 -3, Addison-Wesley Inc., Reading, Massachusetts, 1998
- 8. Steven S. Skiena, "The Algorithm Design Manual", Springer-Verlag, Londyn, 2008