

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-PT-214				
	part-time programme:					
Course title in Polish	Laserowa i plazmowa obróbka powierzchniowa					
Course title in English	Laser and Plasma Processes					
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	Design and Manufacturing
Department responsible	Department of Maintenance, Laser and Nanoscale Technologies
Course leader	dr inż. Hubert Danielewski
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		specialism-related
Course status		compulsory
Language of instruction		English
	full-time programme	Semester II
Semester of delivery	part-time programme	Semester II
Pre-requisites		
Examination required (YES/NO)		YES
ECTS value		2

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		15		
per semester	part-time programme					

LEARNING OUTCOMES

Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
	W01	Has a structured and theoretically grounded knowledge of laser and plasma surface treatment and is familiar with the main development trends in these fields.	MiBM2_W03
Knowledge	W02	Has detailed and theoretically supported knowledge related to the assessment of the performance and use of laser technology for surface layer modification and performance properties.	MiBM2_W07
	W03	He has a comprehensive knowledge of surface engineering, e.g. modelling of the surface layer, assessment of surface condition and durability, measurement of geometrical parameters of surfaces, tribological testing of surfaces after laser treatment.	MiBM2_W11
	U01	Can apply knowledge to design laser and plasma surface treatment, material selection, process parameters.	MiBM2_U01
Skills	U02	Be able to prepare documentation for the execution of an engineering task related to the planning of the laser and plasma surface treatment process.	MiBM2_U04
	U03	Can select methods and tools for laser and plasma surface treatment processes aimed at using the beam to selectively vapourise the surface.	MiBM2_U08
	K01	He is aware of the importance and understanding to the non-technical aspects and effects of engineering activities, including its impact on the safety of others and the impact on the environment and the related responsibilities.	MiBM2_K02
Competence	K02	Is ready to responsibly perform professional roles related to the field of study of mechanics and mechanical engineering, adhere to ethical principles and act to adhere to these principles taking into account the changing needs of society, cares about the achievements, ethos and traditions of the profession.	MiBM2_K05

COURSE CONTENT

Mode of	Topics covered
instruction	Topics covered

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

lecture	Basic concepts of laser and plasma surface treatment, effects of coherent and coherent optical radiation and plasma jet to produce thermal phenomena in the material. Determination of emissivity and absorptivity of the material for different wavelength ranges of the laser beam, distribution of radiation intensity across the cross-section, shape and duration of pulses. Generation of laser radiation for different types of active medium including pulsed lasers. Interaction of a focused laser beam with the surface of materials: heating, melting, vaporisation, cold ablation. Creation of photo-thermal and photo-chemical phenomena. Basic parameters of laser and plasma surface treatment processes, use of different optics, shape and peak energy in the pulse. Effect of polarisation on the effect of the laser beam on the surface of different materials. Absorptivity of the laser beam when treating metallic materials. Methods to increase absorption. Laser surface remelting. Laser surface processing: texturing, cleaning, marking and micro hollowing of surfaces. Additive laser surface processing using selective deposition of additive material through laser beam interactions. Using LMD and LWD methods to modify surface properties and regenerate surfaces.
laboratory	Selection of laser hardening parameters including hardness measurement. Surface alloying using selective laser beam remelting. Laser hollowing of holes and micro- holes in metallic and non-metallic materials. Influence of deposition parameters of the additive material on the shape of the deposition profile. Laser surface strengthening by surfacing using selective metal powder melting (LMD). Laser surface reconditioning using deep deposition of additive material in solid wire form (LWD). Incremental laser processing. Surface cleaning using burn-in, evaporation and cold ablation mechanisms. Selective surface texturing using pulsed lasers and scanning systems. Surface marking of various materials using laser beams and selective ablative material removal.

ASSESSMENT METHODS

Outcome	Methods of assessment								
code	Oral examination	Written examination	Test	Project	Report	Other			
W01			Х						
W02			Х						
W03			Х						
U01			Х		X				
U02			Х		X				
U03			Х		Х				
K01						Х			
K02						Х			

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	Successful completion of the final colloquium. Obtaining at least 50% of the points.
laboratory	non-examination assessment	Successful completion of class reports and obtaining at least 50% of the points on the final colloquium.

OVERALL STUDENT WORKLOAD

ECTS weighting						
No.	Activity type	Student workload	Unit			

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

		full-time programme					part-time programme					
1	Scheduled contact hours	L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	h
1.	Scheduled contact hours	15		15								п
2.	Other contact hours (office hours, examination)	4	4 2							h		
3.	Total number of contact hours		36							h		
4.	Number of ECTS credits for contact hours	1,4							ECTS			
5.	Number of independent study hours		14							h		
6.	Number of ECTS credits for independent study hours			0,6								ECTS
7.	Number of practical hours		25							h		
8.	Number of ECTS credits for practical hours			1,0								ECTS
9.	Total study time			50								h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time		2			ECTS						

READING LIST

- 1. J. Kusiński, Lasery ich zastosowanie w inżynierii materiałowej.
- 2. M. Sparkes, W.M. Steen, Handbook of Laser Technology and Applications, CRC Press 2021
- 3. P. Cavaliere, Laser cladding of metals, Springer 2021
- 4. J. Landers, Laser engineering, Wilford Press, 2016
- 5. C. Breck Hitz, J. Ewing, J. Hecht, Introduction to Laser Technology, Willey, 2012
- 6. G. Laufer, Introduction to Optics and Lasers in Engineering, Cambridge University Press 2005
- 7. S. Santhanakrishnan, N. B. Dahotre, ASM Handbook Steel Heat Treating Fundamentals and
- 8. Processes, ASM International, 2013
- 9. Z. Szymański, Fizyka laserów
- 10. Z. Mucha, Modelowanie i badania eksperymentalne laserowego kształtowania materiałów konstrukcyjnych, WPŚ 2004

