

COURSE SPECIFICATION

fill Course code	full-time programme:	M#2-S2-ME-PT-211				
	part-time programme:					
Course title in Polish	Projektowanie maszyn i urządzeń					
Course title in English	Machine Design					
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-timeprogramme
Specialism	Design and Manufacturing
Department responsible	Department of Maintenance, Laser and Nanoscale Technologies
Course leader	dr inż. Piotr Kurp
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		specialism-related					
Course status		compulsory					
Language of instructior	1	English					
	full-time programme	Semester II					
Semester of delivery	part-time programme	Semester II					
Pre-requisites							
Examination required (YES/NO)	NO					
ECTS value		3					

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15			15	
per semester	part-time programme					

LEARNING OUTCOMES

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
	W01	Has advanced knowledge in the design of machinery and equipment and the solution of engineering tasks in mechanics and mechanical engineering. Can understand the physical relationships in mechanical machines and the complex relationships between them.	MiBM2_W02
Knowledge	W02	Has advanced knowledge of creating and analyzing technical documentation, including elements of engineering design. Has detailed theoretical knowledge of designing machine parts and their construction.	MiBM2_W06 MiBM2_W07
	W03	Has established and in-depth knowledge of engineering graphics and CAD/CAM systems used to design mechanical parts and devices.	MiBM2_W12
	U01	Be able to apply knowledge from the basic sciences to solve complex engineering problems in mechanics and mechanical engineering. This includes design, construction, selection and materials.	MiBM2_U01
Skills	U02	MiBM2_U02 MiBM2_U08	
	U03	Is able to prepare documentation using specialised terminology. Is able to design mechanical systems using computer aided design and performs design of complex machine components using CAD/CAM software.	MiBM2_U04 MiBM2_U13
Competence	K01	MiBM2_K01	
Competence	K02	Is ready to responsibly perform professional roles related to the field of study of mechanics and machine design, adhere to ethical principles and work to ensure compliance with these principles, taking into account changing social needs, cares about the achievements, ethos and traditions of the profession. Adheres to the principles of professional ethics and takes action to ensure their compliance.	MiBM2_K05

COURSE CONTENT

Mode of	Tanica covered
instruction	ropics covered

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

lecture	Repetition of the principles of creating technical drawing documentation - principles in technical machine drawing. Basic principles of designing mechanical devices. Definition of transmission: geometric, kinetic and dynamic. Types of mechanical transmissions, calculations of transmissions, selection of transmissions in mechanical devices. Clutches in mechanical devices - types, principle of operation, principles of clutches' selection. Shafts and axles and bearings in machine design - types of bearings, calculations of bearings, principles of bearings' selection in mechanical devices. Linear technique in machine design - types of guide rails and rolled ball screws mechanisms, calculations and principles of selection of guide rails and rolled ball screws mechanisms in mechanical devices. Basic information on the connections of machine parts - types, calculations, principles of selection.
Class	Computational exercises concerning: calculation of power/torque requirements of engines used in mechanical drives (engine selection depending on operating parameters), calculation and selection of selected mechanical transmissions, calculation and selection of rolled ball screw mechanisms.
project	An individual design task consisting in performing basic calculations of selected mechanical transmissions and rolled ball screw mechanisms, selecting construction elements (bearings, clutches, guide rails) and drives, and presenting own design solution in the form of technical and drawing documentation for an exemplary mechanical system.

ASSESSMENT METHODS

Outcome			Methods of	assessment		
code	Oral examination	Written examination	Test	Project	Report	Other
W01			Х			
W02			Х			
W03			Х			
U01			Х	Х		
U02			Х	Х		
U03			Х	Х		
K01						Х
K02						X

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination	Obtaining at least 51 points out of 100 possible in the final
lecture	assessment	assignment
class	non-examination	Obtaining at least 51 points out of 100 possible in written
Class	assessment	assignments
project	non-examination	Obtaining at least 51 points out of 100 possible for the
project	assessment	completed design task

OVERALL STUDENT WORKLOAD

ECTS weighting												
Student workload								Unit				
No.	Activity type	full-time part-time programme										
1.	Scheduledcontacthours	L	С	Lb	Р	S	L	С	Lb	Ρ	S	h

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

		15	15		15							
2.	Other contact hours (office hours, examination)	2	2		2							h
3.	Total number of contact hours			51								h
4.	Number of ECTS credits for contact hours	2,0						ECTS				
5.	Number of independent study hours		24									h
6.	Number of ECTS credits for independent study hours	1,0									ECTS	
7.	Number of practicalhours	50									h	
8.	Number of ECTS credits for practical hours	2,0									ECTS	
9.	Total study time			75								h
10.	ECTS credits for thecourse 1 ECTS credit = 25-30 hours of study time	3							ECTS			

READING LIST

- 1. Leonid W. Kurmaz, Oleg L. Kurmaz., Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2011.
- 2. Eugeniusz Mazanek (red.), Przykłady obliczeń z podstaw konstrukcji maszyn cz. 1, Połączenia, sprężyny, zawory, wały maszynowe, Wydawnictwa Naukowo-Techniczne, Warszawa 2012.
- Eugeniusz Mazanek (red.), Przykłady obliczeń z podstaw konstrukcji maszyn cz. 2, Łożyska, sprzęgła i hamulce, przekładnie mechaniczne, Wydawnictwa Naukowo-Techniczne, Warszawa 2012.
- 4. Joachim Potrykus, Poradnik mechanika, REA, 2022.
- 5. Zdzisław Bańkowski et al., Mały poradnik mechanika. T. 1, Nauki matematyczno-fizyczne, materiałoznawstwo, Wydawnictwa Naukowo-Techniczne, Warszawa 1994.
- 6. Zdzisław Bańkowski et al., Mały poradnik mechanika. T. 2, Podstawy konstrukcji maszyn, maszynoznawstwo, Wydawnictwa Naukowo-Techniczne, Warszawa 1994.
- 7. Katalogi producentów: łożysk ślizgowych i tocznych, napędów liniowych, silników

