

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-PT-115					
	part-time programme:						
Course title in Polish	Dynamika układów mechanicznych						
Course title in English	Dynamics of Mechanical Systems						
Valid from (academic year)	2024/2025						

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	Design and Manufacturing
Department responsible	Department of Automotive Engineering and Transport
Course leader	dr inż. Andrzej Zuska
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		specialism-related				
Course status		compulsory				
Language of instruction		English				
full-time programme		Semester I				
Semester of delivery	part-time programme	Semester I				
Pre-requisites						
Examination required (YES/NO)		NO				
ECTS value		2				

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		15		
per semester	part-time programme					

LEARNING OUTCOMES

	Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
--	------------------------	-----------------	--------------------------	--

Dofinansowane przez Unię Europejską

r	1				
	W01	Has a structured knowledge of the basic concepts and problems of the dynamics of mechanical discrete systems.	MiBM2_W01 MiBM2_W07		
	W02	Has a structured knowledge of the modeling of mechanical discrete systems as an oscillating system.	MiBM2_W01 MiBM2_W07		
Knowledge	W03	Has a structured knowledge of the components of the models, with particular emphasis on the susceptible components.	MiBM2_W01 MiBM2_W07		
	W04 W04 Has a basic theoretical knowledge of the construction of the equations of vibration of discrete systems. Is familiar with Lagrange's Equations of the second kind.				
	W05	Has basic theoretical knowledge of selected issues of classical analysis of mechanical vibrations of discrete systems (time domain analysis).	MiBM2_W01 MiBM2_W07		
	W06	Has basic theoretical knowledge of spectral analysis of vibrations.	MiBM2_W01 MiBM2_W07		
	U01	Can determine the characteristics of susceptible elements (linear and nonlinear), used in modeling the dynamics of discrete systems.	MiBM2_U02 MiBM2_U11		
	U02	Can apply the operator method to determine the characteristics of linear susceptible elements.	MiBM2_U02 MiBM2_U11		
Skills	U03	Be able to build an algorithm and computational program for vibration analysis of a mechanical model of a discrete system in the time domain (in different coordinate systems).	MiBM2_U02 MiBM2_U11		
	U04	Can build an algorithm and computational program to analyze the vibration of a mechanical model of a discrete system in the frequency domain.	MiBM2_U02 MiBM2_U11		
Competence K01		Understands the need for and knows the possibilities of improving his professional skills.	MiBM2_K01		

COURSE CONTENT

Mode of	
instruction	Topics covered

Dofinansowane przez Unię Europejską

	Basic concepts and problems of vertical dynamics of mechanical discrete systems.							
	Features of fundamental motion and perturbations of fundamental motion.							
	Assumptions made in classical vibration theory of discrete systems. Modeling in							
	machine dynamics.							
	The process of building dynamic models: determination of the structure of the							
	model, description of mass quantities, coordinates of the system, determination of the							
	number of degrees of freedom, determination of data and description of the forcing							
	acting on the system.							
	Components of a dynamic model. Mass elements: methods of experimental							
	determination and approximate estimation of moments of inertia of the entire discrete							
	system and other model bodies. Deformable elements - basic models of linear							
	elements. Operator method of determining characteristics of linear elements; operator							
	stiffness. Characteristics of parallel and series connection of two linear elements.							
	Nonlinear prone elements. Methods of determining the characteristics of nonlinear							
	elements. Method of extracting the characteristics: elastic and damping characteristics							
	from the characteristics determined in the form of an inelastic hysteresis loop. The							
	concept of a weakly nonlinear element - linearization of nonlinear characteristics of susceptible elements. Vibration excitations - classification of signals.							
	Construction of the equations of vibration of a mechanical discrete system.							
	Lagrange equations of the second kind. Total kinetic and potential energy of the							
lecture	system. Use of Lagrange's equations to derive the equations of motion of a spatial							
	model of a discrete system with 3 degrees of freedom. Use of the operator method to							
	introduce linear susceptible elements with different characteristics into the model.							
	Introduction of the postulate of symmetry of the model with respect to the xOz-plane -							
	decoupling of vibrations in the longitudinal and transverse planes. Notation of							
	equations of vibration in matrix form.							
	Selected issues of classical analysis of vibrations of a mechanical discrete system							
	(analysis in the time domain) Natural frequencies of systems with multiple degrees of							
	freedom - the method of determination. The problem of decoupling of vibrations of							
	partial sub-systems (Mandelstam's conditions).							
	Spectral analysis of vibrations of a mechanical discrete system. Spectral analysis							
	of periodic oscillations. Fourier series. Discrete (strip) spectra: amplitude-frequency							
	and phase-frequency. Fourier integral transformation. Properties of the Fourier transform. Spectra of non-periodic oscillations (continuous spectra). Application of the							
	Fourier transform to solve the equation of vibration of a system with one degree of							
	freedom. Spectral transmittance of a system. Graphical representation of							
	transmittance: real and imaginary part of transmittance; amplitude-frequency and							
	phase-frequency characteristics (modulus and argument). Transmittance of the input							
	of a system with kinematic forcing. Spectral analysis of vibrations of systems with							
	multiple degrees of freedom. Transmittance matrix and its properties.							
	Determination of characteristics of susceptible elements used in modeling a) linear							
	elements b) elements with nonlinear and complex characteristics.							
	Application of the operator method to determine the characteristics of linear prone							
	elements. Determination of characteristics of parallel and series connection of two							
laboratory	susceptible elements.							
	Development of a program to analyze the motion of the model in solid coordinates.							
	Develop a program to analyze the motion of the model in point coordinates.							
	Development of a program to determine the natural frequency of the system.							
	Development of a program to determine the transmittance modulus and power spectral							
	densities of the system response.							

ASSESSMENT METHODS

Outcome	Methods of assessmentOralWritten examinationTestProjectReportOther								
code									
W01			Х						
W02			Х						

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

W03		Х		
W04		Х		
W05		Х		
W06		Х		
U01			Х	
U02			Х	
U03			Х	
U04			Х	
K01				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	Successful completion of the colloquium, obtaining at least 50% of the points
laboratory	non-examination assessment	Passing the reports, obtaining at least 50% of the points.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
		Student workload								Unit		
No.	Activity type		-	ll-tin	-			•	rt-tir			
		L	L C Lb P S			L	C C	gran	P	S		
1.	Scheduled contact hours		C		Γ	3		C		Г	3	h
		15		15								
2.	Other contact hours (office hours, examination)	2	2 2								h	
3.	Total number of contact hours		34							h		
4.	Number of ECTS credits for contact hours		1,4								ECTS	
5.	Number of independent study hours		16								h	
6.	Number of ECTS credits for independent study hours		0,6								ECTS	
7.	Number of practical hours		25							h		
8.	Number of ECTS credits for practical hours	1,0							ECTS			
9.	Total study time	50				h						
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time						2					ECTS

READING LIST

- 1. Mitschke M. Dynamika samochodu. Drgania. WKiŁ, Warszawa, 1989.
- 2. Kasprzyk T., Prochowski L. Obciążenia dynamiczne zawieszeń. WKiŁ, Warszawa, 1990.
- Osiecki J., Gromadowski T., Stępiński B., Badania Pojazdów Samochodowych i ich zespołów na symulacyjnych stanowiskach badawczych. Wydawnictwo Instytutu Technologii i Eksploatacji, Radom, 2006.

Rzeczpospolita Polska

 Kamiński E., Pokorski J. Dynamika zawieszeń i układów napędowych pojazdów samochodowych. WKiŁ, Warszawa, 1983. 5. Blajer W. Metody dynamiki układów wieloczłonowych. Wyd. Politechniki Radomskiej, Radom, 1998.

