

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-EM-214				
Course code	part-time programme:					
Course title in Polish	Chłodnictwo i klimatyzacja					
Course title in English	Refrigeration and Air Conditioning					
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	Machine Operation and Maintenance
Department responsible	Department of Mechanics and Heat Transfer
Course leader	dr inż. Robert Kaniowski
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		specialism-related
Course status		compulsory
Language of instructio	n	English
Semester of delivery	full-time programme	Semester II
	part-time programme	Semester II
Pre-requisites		Fluid Mechanics, Thermodynamics
Examination required (YES/NO)		NO
ECTS value		2

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		15		
per semester	part-time programme					

LEARNING OUTCOMES

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Category of Outcome code		Course learning outcomes	Corresponding programme outcome code
	W01	The student knows the methods of achieving low temperatures and the principles of operation of compression and sorption refrigeration devices.	MiBM2_W02 MiBM2_W03 MiBM2_W10
	W02	The student knows the basic principles of air processing. They understand the principles of operation of air conditioning systems.	MiBM2_W02 MiBM2_W04 MiBM2_W10
Knowledge	W03	The student knows examples of refrigerants and their properties.	MiBM2_W04 MiBM2_W10
	W04	The student understands the principles of air flow in buildings and vehicles. The student is familiar with the structure of various ventilation systems.	MiBM2_W10
	W05	The student is familiar with current regulations and safety standards related to refrigeration devices and systems.	MiBM2_W10
	U01	The student can draw a compression cycle and calculate its characteristic parameters, as well as select a suitable refrigerant.	MiBM2_U10 MiBM2_U11 MiBM2_U15
Skills	U02	The student can use thermodynamic tables to calculate the parameters characterizing the compression cycle.	MiBM2_U10 MiBM2_U11 MiBM2_U15
SKIIS	U03	The student can determine the parameters of humid air and the design parameters for outdoor air. They have basic knowledge of air parameter regulation.	MiBM2_U10 MiBM2_U11 MiBM2_U15
	The student can determine the efficiency of a heatU04pump and the performance of a refrigerationcompressor.	MiBM2_U10 MiBM2_U11 MiBM2_U15	
Competence	К01	The student is aware of the importance of and understands the non-technical aspects and impacts of safety engineering activities in refrigeration and air conditioning, considering their environmental impact and the responsibility associated with decision-making.	MiBM2_K01 MiBM2_K04
	K02	Is able to work in a group, obeys the rules of teamwork; is able to present his/her position and defend it using factual arguments in the discussion.	MiBM2_K01 MiBM2_K04

COURSE CONTENT

Mode of	Topics covered
instruction	Topics covered

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

lecture	Methods of obtaining low temperatures. Division of air conditioning systems. Air conditioning units. Refrigerators and heat pumps. Reverse Carnot cycle, Linde cycle. The actual left-hand cooling circuit. T-s and p-h charts. Steam compressor refrigeration circuits. Air compressor refrigeration equipment. Basics of operation of absorption devices. Zeotropic and azeotropic refrigerants and mixtures. Refrigerants in the light of environmental protection. Properties of factors, scope of applications. Humid air: physical and thermodynamic properties, psychrometric parameters. h-x diagram for humid air. Comfort air conditioning, thermal comfort, air parameters in rooms and motor vehicles, calculation parameters for outdoor air. The amount of air supplied. Designing the air treatment process on the Mollier i-x diagram. Regulation of air parameters in the room. Heat recovery methods in air conditioning devices. Basic knowledge about ventilation. Air quality. Indoor and outdoor air pollution. Ventilation of living spaces and motor vehicles. Air exchange in industrial and residential facilities.
laboratory	Measurement of relative air humidity, velocity, dew point and wet bulb temperatures. Determination of the characteristics of the ventilation duct. Energy efficiency ratio of a reversible heat pump. Testing of a compressor refrigerator. Analysis of the refrigeration cycle in the <i>p</i> - <i>h</i> system. Determination of the energy efficiency ratios of an air-air and water-air compressor refrigeration device.

ASSESSMENT METHODS

Outcome	Methods of assessment									
code	Oral examination	Written examination	Test	Project	Report	Other				
W01			Х							
W02			Х							
W03			Х							
W04			Х							
W05			Х							
U01			Х		Х					
U02			Х		Х					
U03			Х		Х					
U04			Х		Х					
K01						Х				
K02						Х				

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	Assessment in the form of an open test. The grade depends on the points obtained during the exam. A student receives a positive grade after exceeding 51 points.
laboratory	non-examination assessment	Obtaining at least 50% of points in colloquiums preceding laboratories and preparing reports

OVERALL STUDENT WORKLOAD

ECTS weighting						
No.	Activity type	Student workload	Unit			

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

		full-time programme				part-time programme						
1.	Scheduled contact hours		С	Lb	Ρ	S	L	С	Lb	Р	S	h
1.		15		15								
2.	Other contact hours (office hours, examination)	2		2								h
3.	Total number of contact hours			34							h	
4.	Number of ECTS credits for contact hours	1,4							ECTS			
5.	Number of independent study hours	16							h			
6.	Number of ECTS credits for independent study hours		0,6							ECTS		
7.	Number of practical hours	25							h			
8.	Number of ECTS credits for practical hours	1,0						ECTS				
9.	Total study time	50						h				
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time		2					ECTS				

READING LIST

- SILBERSTEIN OBRZUT T., Refrigeration & Air Conditioning Technology, Cengage, 2020.
 Diner Ibrahim, Refrigeration Systems and Applications, Wiley, 2017
- 3. Langley Billy, Air Conditioning and Refrigeration Troubleshooting Handbook, Prentice Hall, 2003

