

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-EM-111					
	part-time programme:						
Course title in Polish	Szybkie prototypowanie hardware in the loop	Szybkie prototypowanie sterowania i symulacje hardware in the loop					
Course title in English	Rapid Control Prototyping and Hardware-in-the-Loop Simulation						
Valid from (academic year)	2024/2025						

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	Machine Operation and Maintenance
Department responsible	Department of Mechatronics and Weapons Engineering
Course leader	dr hab. Jakub Takosoglu, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		specialism-related				
Course status		compulsory				
Language of instruction		English				
	full-time programme	Semester I				
Semester of delivery	part-time programme	Semester I				
Pre-requisites						
Examination required (YES/NO)		NO				
ECTS value		3				

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		15	15	
per semester	part-time programme					

LEARNING OUTCOMES

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	The student has structured advanced knowledge in the field of control theory, control objects, knows the technology of rapid control prototyping and hardware in the loop simulations, knows the synthesis of control algorithms supporting the solution of engineering problems related to the control of processes in mechanical engineering.	MiBM2_W03 MiBM2_W09
Knowledge	W02	The student has structured advanced knowledge in the field of mechatronics, control of electric, pneumatic and hydraulic drives, has practical knowledge in the field of operation and safety of devices used in industry, including detailed knowledge of the design of control systems in mechanical engineering.	MiBM2_W07
Skills	U01	The student is able to consciously use computer software and specialist technical software in the area of mechanical engineering in the design of control systems and control objects, is able to apply rapid control prototyping technology and hardware in the loop simulations.	MiBM2_U08 MiBM2_U10
	U02	The student is able to work in a team, is able to organize and configure a laboratory stand in accordance with guidelines, is able to prepare a schedule for conducting laboratory tests.	MiBM2_U15
Competence	K01	The student is ready to critically evaluate his/her knowledge and the possibilities of acquiring new information in the field of designing control systems with PLC controllers in the field of mechanical engineering.	MiBM2_K01

COURSE CONTENT

Mode of instruction	Topics covered
lecture	Basic definitions of control rapid prototyping RCP techniques and hardware in the loop simulation HIL techniques. Real-time systems: dSpace, xPC Target. RCP system control system-real object. HIL system controller-virtual object. Examples of solutions.
laboratory	Basics of using the SIMULINK software. Basics of using the xPC Target and dSpace real-time systems. Getting to know the xPC Target and dSpace hardware platforms. Fuzzy control system for an electropneumatic servo drive. Control system for the rotational speed of a DC motor. Automatic temperature control system for a virtual object using a real controller.
project	 Students in groups are tasked with designing a control system based on the rapid control prototyping technique or designing a virtual object controlled by a real controller based on the hardware in the loop simulation technique. The project includes the following activities: Development of a conceptual model. Selection of components. Simulation testing of the designed systems. Creation of the designed system in the laboratory. Starting the system and testing it in laboratory conditions. Analysis of the obtained results and conclusions. Preparation of technical documentation.

Dofinansowane przez Unię Europejską

ASSESSMENT METHODS

Outcome	Methods of assessment							
code	Oral examination	Written examination	Test	Project	Report	Other		
W01			Х					
W02			Х					
U01			Х	Х	Х	Х		
U02			Х	Х	Х	Х		
K01						Х		

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria						
locturo	non-examination	Positive completion of the final test. Obtaining at least 50% of						
lecture	assessment	the points.						
laboratory	non-examination	Positive passing of tests and reports from the laboratories.						
laboratory	assessment	The final grade is an arithmetic mean.						
project	non-examination	Project proparation and its positive defense						
project	assessment	riojeol preparation and its positive deletise.						

OVERALL STUDENT WORKLOAD

ECTS weighting												
	Activity type		Student workload									Unit
No.			full-time					pa	rt-tir	ne		
		L	C	Lb	P	S	L		Lb	P	S	
1.	Scheduled contact hours	15		15	15							h
2.	Other contact hours (office hours, examination)	2	2 2 2									h
3.	Total number of contact hours		51								h	
4.	Number of ECTS credits for contact hours		2,0								ECTS	
5.	Number of independent study hours		24							h		
6.	Number of ECTS credits for independent study hours		1,0							ECTS		
7.	Number of practical hours		50								h	
8.	Number of ECTS credits for practical hours		2,0								ECTS	
9.	Total study time	75						h				
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time		3						ECTS			

READING LIST

1. Levent Güvenç; Bilin Aksun-Güvenç; Burak Demirel; Mümin Tolga Emirler: Control of Mechatronic Systems, The Institution of Engineering and Technology, 2017.

Dofinansowane przez Unię Europejską

2. Dirk A., Bollig A.: Rapid Control Prototyping. Methoden und Anwendungen, Institut für Regelungstechnik, RWTH Aachen, Aachen, 2006.

3. Frank W. Liou: Rapid Prototyping And Engineering Applications: A Toolbox for Prototype Development, CRC Pr I Llc, 2007.

4. Takosoglu J., Dindorf R., Laski P.: Rapid prototyping of fuzzy controller pneumatic servo-system, International Journal of Advanced Manufacturing Technology, Springer London Ltd, 2009.

5. www.mathworks.com

6. <u>www.speedgoat.com</u>

7. <u>www.dspace.com</u>

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23