

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-208			
	part-time programme:				
Course title in Polish	Badania zaawansowanych metod druku 3D				
Course title in English	Materials Characterization in Advanced 3D Printing				
Valid from (academic year)	2024/2025				

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Metrology and Modern Manufacturing
Course leader	dr hab. inż. Tomasz Kozior, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific
Course status		compulsory
Language of instructio	n	English
	full-time programme	Semester II
Semester of delivery	part-time programme	Semester II
Pre-requisites		
Examination required (YES/NO)		NO
ECTS value		2

Mode of instruc	ction	lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		30		
per semester	part-time programme					

LEARNING OUTCOMES

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska

Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
	W01	Student has an in-depth and structured knowledge of the phenomena occurring in mechanical machines and devices, in particular 3D printers, in terms of performing mechanical property tests.	MiBM2_W02
	W02	Student has a structured and theoretically deepened knowledge in the field of engineering tasks related to mechanics and mechanical engineering, broadly understood design including prototyping, knows the main development trends in these fields in particular in the area of 3D printing.	MiBM2_W03
Knowledge	W03	Student has a detailed and in-depth knowledge of the technology of manufacturing and machining of machine parts, in particular of incremental technologies, issues of rapid prototyping, also has a structured and in-depth knowledge of the construction of various types of systems for machining and shaping materials.	MiBM2_W05
	W04	Student has in-depth knowledge in the area of measurement of geometrical, mechanical, operational or strength parameters in particular in the area of 3D printing.	MiBM2_W08
	W05	Student has solid knowledge necessary to understand economic, legal, social, ethical, ecological and other non-technical conditions of professional activity in the area of technological process of manufacturing models using 3D printing technology. Knows the fundamental dilemmas of modern civilization.	MiBM2_W14
	U01	Student is able to use knowledge from the area of basic sciences to formulate and solve complex engineering tasks in various areas of mechanics and machine construction at the design, construction, materials selection, manufacturing, prototyping and testing stages. Is able to evaluate, critically analyze and synthesize obtained results and express opinions and comments.	MiBM2_U01
	U02	Student is able to design the technological process of typical machine parts in the area of mechanics and machine construction and select appropriate machines and devices for this purpose.	MiBM2_U07 MiBM2_U13
Skills	U03	Student is able to perform measurements of various types of quantities and parameters related to the manufacturing process, testing and operation of mechanical parts and systems, is able to interpret the obtained results, analyze measurement uncertainty and develop conclusions.	
	U04	Student is able to select appropriate engineering materials, manufacturing technologies and technological parameters to ensure the appropriate quality of manufactured models and the correct operation of a machine or system in various areas of mechanics and machine construction, taking into account multi-variant solutions if necessary.	MiBM2_U12

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

	U05	Student is able to recognise the complex interrelationship of engineering decisions with the non-technical area including recognition of environmental, economic, legal and sustainable design aspects with safety and accessibility criteria in accordance with applicable requirements and standards.	MiBM2_U14
	K01	Student is aware of the need to independently supplement and expand knowledge in the field of mechanics and machine construction. Is ready to critically evaluate the knowledge they possess, the importance of knowledge in solving cognitive and practical problems, and the need to acquire new information both from literature and from experts in the field of mechanics and machine construction. Understands the need and knows the possibilities of continuous improvement (third-cycle studies, postgraduate studies, courses) aimed at improving professional, personal and social competences.	MiBM2_K01
Competence	K02	Student is aware of the importance of and understands the non-technical aspects and effects of engineering activities, including their impact on the safety of other people and the impact on the environment and the responsibilities associated with these issues.	MiBM2_K02
	K03	Student is ready to responsibly perform professional roles related to the field of study of mechanics and machine construction, adhere to ethical principles and work to ensure compliance with these principles, taking into account changing social needs, cares about the achievements, ethos and traditions of the profession. Adheres to the principles of professional ethics and takes action to ensure their compliance.	MiBM2_K05

COURSE CONTENT

Mode of instruction	Topics covered
lecture	Familiarizing students with advanced 3D printing technologies based on plastics and metals used in industrial and research practice, both in the area of prototyping and production series production. Introduction to the safe use of the above-mentioned 3D printing methods in the aspect of modern engineering materials based on current standards and literaturę. Discussion of research on the assessment of selected properties/quality features of models manufactured using 3D printing technology, as well as an introduction to estimating the impact of technological parameters on the quality of manufactured models. Introduction to the process of planning, conduct and analyzing research results based on research literature and international standards. Discussion of standards currently used in 3D printing, with particular focus on the industrial and research aspect. Methods of presenting research results, taking into account the standard deviation and uncertainty of measurements. Discussion of ecological and ethical problems in the aspect of using 3D printing, disposal of materials and recycling possibilities.

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

laboratory	Conducting laboratory assignments covering the analysis of the impact of selected technological parameters of the 3D printing process on selected properties of the manufactured models. Conducting laboratory exercises covering the analysis of rheological properties (relaxation and creep), tensile, compressive and bending strength, assessment of the surface texture, microscopic assessment of the surface, assessment of stiffness. Performing introductory to advanced 3D printing technologies such as selective laser sintering - SLS and Photo-curing of liquid polymer resins - PJM using 3D printers in the laboratory. Use of standard sample models, models with a cellular structure and thin-walled models. Conducting an extended evaluation of digital files used in 3D printing with a focus on the quality of
	models, models with a cellular structure and thin-walled models. Conducting an extended evaluation of digital files used in 3D printing with a focus on the quality of
	the manufactured models. Presentation of test results using statistical assessment (standard deviation, measurement uncertainty).

ASSESSMENT METHODS

Outcome	Methods of assessment										
code	Oral examination	Written examination	Test	Project	Report	Other					
W01			Х								
W02			Х								
W03			Х								
W04			Х								
W05			Х								
U01					Х						
U02					Х						
U03					Х						
U04					Х						
U05					Х						
K01						Х					
K02						Х					
K03						Х					

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	Passing the colloquium with at least 50%.
laboratory	non-examination assessment	Preparing and passing of all laboratories reports with a minimum of 50% each.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
			Student workload									Unit
No.	Activity type	full-time programme				part-time programme						
1	Scheduled contact hours	L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	h
1.		15		30								
2.	Other contact hours (office hours, examination)	2		2								h

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

3.	Total number of contact hours	49		h
4.	Number of ECTS credits for contact hours	1,6		ECTS
5.	Number of independent study hours	11		h
6.	Number of ECTS credits for independent study hours	0,4		ECTS
7.	Number of practical hours	40		h
8.	Number of ECTS credits for practical hours	1,3		ECTS
9.	Total study time	60		h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	:	2	ECTS

READING LIST

- 1. Kozior T., Bochnia J.: Fundamentals of Rapid Prototyping, 3D printing, FDM/FFF technology, Kielce University of Technology Publisher, Kielce 2024/2025.
- 2. Chua., Chee Kai.: 3D printing and additive manufacturing: principles and applications, the 5th edition of rapid prototyping: principles and application, World Scientific, 2017.
- 3. Bochnia J.: Wybrane właściwości fizyczne materiałów kształtowanych technologiami przyrostowymi, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2018.
- 4. Budzik G., Siemiński P.: Techniki przyrostowe. Druk 3D. Drukarki 3D, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2015.
- 5. Budzik G., Woźniak J., Przeszłowski Ł.: Druk 3D jako element przemysłu przyszłości. Analiza rynku i tendencje rozwoju., Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2022.

International Standards

- 1. PN-EN ISO/ASTM 52900: Additive manufacturing General principles Fundamentals and vocabulary, 2021.
- PN-EN ISO/ASTM 52901: Additive manufacturing General principles Requirements for purchased AM parts, 2018.
- 3. ISO 3384-1: Rubber, vulcanized or thermoplastic Determination of stress relaxation in compression — Part 1: Testing at constant temperaturę, 2019.
- 4. ISO 527-1: Plastics Determination of tensile properties Part 1: General principles, 2019.
- 5. ISO 178: Plastics Determination of flexural properties, 2019.
- 6. ISO 604: Plastics Determination of compressive properties, 2002.
- 7. ISO 899-1: Plastics Determination of creep behaviour, Part 1: Tensile creep, 2017.

