

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-204				
	part-time programme:					
Course title in Polish	Metody numeryczne w inżynierii mechanicznej					
Course title in English	Numerical Methods in Mechanical Engineering					
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Machine Design and Machining
Course leader	dr hab. inż. Sławomir Błasiak, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific			
Course status		compulsory			
Language of instruction		English			
Semester of delivery	full-time programme	Semester II			
	part-time programme	Semester II			
Pre-requisites					
Examination required (YES/NO)		YES			
ECTS value		2			

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		15		
per semester	part-time programme					

LEARNING OUTCOMES

Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	Has an in-depth knowledge of mathematics, including integration, differentiation and interpolation used in numerical methods necessary for solving complex engineering tasks in the field of mechanics and mechanical engineering, especially in the development of computational algorithms.	MiBM2_W01
	W02	Has the in-depth and structured knowledge necessary to understand physical phenomena and the complex relationships between them in relation to their analysis and simulation.	MiBM2_W02
	U01	Is able to apply advanced computer software to complex problems related to the analysis and simulation of physical phenomena using numerical methods.	MiBM2_U02
Skills	U02	Can be proficient in the use of information and communication tools appropriate for complex engineering tasks in the implementation of numerical methods necessary for solving mathematical models describing basic physical phenomena.	MiBM2_U05
Competence	K01	Is aware of the need to independently supplement and extend knowledge in the analysis and simulation of physical phenomena using numerical methods.	MiBM2_K01

COURSE CONTENT

Mode of instruction	Topics covered
lecture	The lectures in the course "Numerical Methods in Mechanical Engineering" introduce basic and advanced numerical methods and their applications in engineering. Algorithms such as finite difference, finite element and boundary element methods will be discussed, including their implementation and optimisation. Methods for solving partial and integral differential equations used in the analysis of heat conduction, fluid mechanics, stress or contact problems will also be presented. Optimisation issues, including algorithms for determining the extremes of functions, and data analysis using approximation and regression will also be addressed. Students will learn about programming tools, and techniques for optimising numerical code. The course will conclude with a discussion of development trends, such as parallel algorithms and the use of artificial intelligence in numerics.
laboratory	The laboratories provide practical application of numerical methods in solving real engineering problems. Students will learn to develop programmes to solve complex physical problems based on finite difference, finite element and boundary element methods. The class will conclude with the development of a report integrating the learned methods into a complex engineering problem. This provides students with the skills to practically apply numerical methods in a professional environment.

ASSESSMENT METHODS

Outcome code	Methods of assessment								
	Oral examination	Written examination	Test	Project	Report	Other			
W01		Х							

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

W02	X			
U01			Х	
U02			Х	
K01				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction Assessment type Assessment criteria				
lecture	non-examination assessment	Passing the final examination, i.e. obtaining at least 50% of the marks.		
laboratory	non-examination assessment	Final evaluation on the basis of the reports produced. Achievement of at least 50% of the points.		

OVERALL STUDENT WORKLOAD

	ECTS weighting											
			Student workload									Unit
No.	Activity type		fu pro	ıll-tin gram	ne Ime			pa pro	art-tin gran	ne 1me		
1	1. Scheduled contact hours	L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	2
1.		15		15								n
2.	Other contact hours (office hours, examination)	4 2									h	
3.	Total number of contact hours	36								h		
4.	Number of ECTS credits for contact hours	1,4							ECTS			
5.	Number of independent study hours	14							h			
6.	Number of ECTS credits for independent study hours	0,6							ECTS			
7.	Number of practical hours	25							h			
8.	Number of ECTS credits for practical hours	1,0								ECTS		
9.	Total study time											h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2			ECTS							

READING LIST

- 1. T. Pang, "Metody obliczeniowe w fizyce: fizyka i komputery"
- 2. D. Potter, "Metody obliczeniowe fizyki"
- 3. W. H. Press, S. A. Teutolsky, W. T. Vetterling, and B. P. Flannery, "Numerical Recipes"
- 4. D. Kincaid, W. Cheney, "Analiza numeryczna"
- 5. R. Grzymkowski, D. Słota, "Wybrane metody obliczeniowe równań całkowych"
- 6. P. Gregory, "Bayesian logical data analysis for the physical sciences"

