

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-203
	part-time programme:	
Course title in Polish	Mechanika doświadczalna	
Course title in English	Experimental Mechanics	
Valid from (academic year)	2024/2025	

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Machine Design and Machining
Course leader	dr hab. inż. Jarosław Gałkiewicz, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific
Course status		compulsory
Language of instruction		English
Compositor of dolivery	full-time programme	Semester II
Semester of delivery	part-time programme	Semester II
Pre-requisites		
Examination required (YES/NO)		NO
ECTS value		2

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15		15		
per semester	part-time programme					

LEARNING OUTCOMES

Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	Has in-depth knowledge of the behavior of engineering materials under load and parameters describing this behavior.	MiBM2_W02
Knowledge	W02	Has in-depth knowledge of advanced material properties used by engineers and how to measure them.	MiBM2_W08
Skills	U01	Is able to acquire knowledge of the properties of materials from literature, databases and other sources and on their basis is able to predict the behavior of the material under load.	MiBM2_U03
	U02	Is able to proficiently operate with data obtained during experiments to determine material constants. Is able to efficiently present the results of their activities.	MiBM2_U05
	U03	Is able to perform complex measurements of material properties using strength machines and their accessories.	MiBM2_U10
	K01	Understands and knows the need to learn new research methods and advanced measuring equipment that improves professional competences.	MiBM2_K01
Competence	K02	Is aware of the impact of engineering activities in the field of determining material constants on non- technical aspects of life and in particular on human safety.	MiBM2_K02

COURSE CONTENT

Mode of instruction	Topics covered
lecture	Material properties important from the strength point of view. Fracture of brittle materials. Stress distribution ahead of the crack tip in a linear-elastic material. Stress intensity factor (SIF) and energy release rate. Fracture criterion. Determination of the critical SIF value. Stress and strain distribution ahead of the crack tip in elastic-plastic materials. J-integral. Fracture criteria for an elastic-plastic material described by the Ramberg-Osgood law. Determination of the critical value of the J-integral. Crack tip opening displacement – Irwin's model and Dugdale's model. Experimental determination of crack tip opening displacement and crack tip opening angle. Dynamic fracture toughness. Fatigue strength of materials. Development of fatigue cracks. Study of the fatigue process.
laboratory	Modern testing machines. Control principles, calibration and organization of measurements. Determination of material properties based on uniaxial tensile test. Determination of fracture toughness of linear-elastic material in plane strain state - K_{IC} . Determination of fracture toughness for elastic-plastic material, critical value of the J-integral - J_{IC} , using standard methods. Measurement of crack tip opening displacement (CTOD), crack opening angle (COA) crack tip opening angle (CTOA) based on ASTM standards. Study of low-cycle fatigue range. Measurement of strain field in notched specimens.

ASSESSMENT METHODS

Outcome	Methods of assessment								
code	Oral examination	Written examination	Test	Project	Report	Other			
W01			Х						
Projekt Doctocowania ksytoksonia w Politachnica									

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Wydział Mechatroniki i Budowy Maszyn

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

W02		Х		
U01			Х	
U02			Х	
U03			Х	
K01				Х
K02				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final in-class test.
laboratory	non-examination assessment	Submitting and defending class reports with a positive assessment.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
		Student workload								Unit		
No.	Activity type	full-time programme						-	rt-tir			
	Scheduled contact hours		C	Lb	P	S	L		gran Lb	P	S	
1.				15	-	_		-			_	h
2.	Other contact hours (office hours, examination)	2	2 2								h	
3.	Total number of contact hours	34					h					
4.	Number of ECTS credits for contact hours	1,4							ECTS			
5.	Number of independent study hours			16							h	
6.	Number of ECTS credits for independent study hours		0,6							ECTS		
7.	Number of practical hours			25								h
8.	Number of ECTS credits for practical hours	1,0							ECTS			
9.	Total study time	50				h						
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2						ECTS				

READING LIST

- 1. Gałkiewicz J., Lis Z., Molasy R., Neimitz A. Mechanika doświadczalna. Laboratorium. Wyd. PŚk, 1999.
- 2. Neimitz A.: Mechanika pękania. PWN, 1998.
- 3. Gołaski L., Elementy doświadczalnej mechaniki pękania, Wyd. Politechniki Świętokrzyskiej, Kielce 1992.
- 4. ASTM E-399, "Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials"
- 5. ASTM E1820-24 Standard Test Method for Measurement of Fracture Toughness.
- 6. Anderson T. L. Fracture Mechanics. Fundamental and Application, CRC Press, 2011

