

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S2-ME-101				
Course code	part-time programme:					
Course title in Polish	Mechanika analityczna					
Course title in English	Analytical Mechanics					
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	second-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechanics and Heat Transfer
Course leader	dr inż. Andrzej Bąkowski
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific
Course status		compulsory
Language of instruction		English
Compositor of dolivory	full-time programme	Semester I
Semester of delivery	part-time programme	Semester I
Pre-requisites		
Examination required (YES/NO)		NO
ECTS value		2

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time programme	15				
per semester	part-time programme					

LEARNING OUTCOMES

ta Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code	
	W01	The student has basic knowledge of general mechanics extended by the concepts of generalized coordinates and generalized forces.	MiBM2_W02	
Knowledge	W02	The student has knowledge of the use of the principle of virtual works.	MiBM2_W02	
	W03	The student has knowledge enabling him to describe mechanical systems using: Lagrange's equations and d'Alembert's principle.	MiBM2_W02	
Skills	U01	The student is able to describe the dynamics of complex mechanical systems with one or many degrees of freedom.	MiBM2_U01	
	U02	The student is able to determine the equilibrium conditions of mechanisms in terms of analytical mechanics.	MiBM2_U01	
	U03	The student is able to describe oscillating systems with one or many degrees of freedom.	MiBM2_U01	
Competence	K01	Understands the importance and possibilities of continuous learning (third-cycle studies, postgraduate studies, courses), which leads to the improvement of professional, personal and social competences.	MiBM2_K01	

COURSE CONTENT

Mode of instruction	Topics covered
lecture	Constraints and their types, classification of systems according to the types of constraints. Generalized coordinates, generalized velocities. Virtual displacement. Perfect restraints. Generalized equation of dynamics. General dynamics equation for rotational and planar motion of rigid body (examples). The principle of virtual works. d'Alembert's principle. Generalized forces. Lagrangian function. Lagrange equations of the II kind - examples: construction of dynamic equations for a material point, a rigid body, a mechanical system with one and many degrees of freedom. Vibrations of many degrees of freedom systems.
class	Kinematics of a rigid body in rotation and plane motion. Kinematics of the mechanical system. Generalized coordinates. The principle of virtual work. Determination of reaction forces (beams), balancing forces (mechanisms). Determining the equilibrium position of mechanical systems. Work of force. Kinetic energy of a system of material points, a rigid body, a mechanical system. Potential energy of the gravity force, elastic force. The principle of equivalence of kinetic energy and work. Principle of conservation of mechanical energy. Lagrange's equations: construction of dynamic equations for a material point, a rigid body, a mechanical system with one and many degrees of freedom.

ASSESSMENT METHODS

Outcome	Methods of assessment							
code	Oral examination	Written examination	Test	Project	Report	Other		
W01			Х					
W02			Х					
W03			Х					
U01			Х					

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

U02		Х		
U03		Х		
K01				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	Obtaining at least 50% of points in the test.
class	non-examination assessment	Obtaining at least 50% of points in the test.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
		Student workload									Unit	
No.	Activity type		-	ll-tin	-			-	rt-tir			
			C	gram Lb	P	S	L C Lb P S					
1.	. Scheduled contact hours	L 15	15			0	-					h
2.	Other contact hours (office hours, examination)	2 2									h	
3.	Total number of contact hours	34							h			
4.	Number of ECTS credits for contact hours	1,4							ECTS			
5.	Number of independent study hours	16							h			
6.	Number of ECTS credits for independent study hours		0,6							ECTS		
7.	Number of practical hours		25							h		
8.	Number of ECTS credits for practical hours	1,0								ECTS		
9.	Total study time	50					h					
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time						2					ECTS

READING LIST

- 1. Engineering Mechanics: Dynamics, Third Edition Andrew Pytel and Jaan Kiusalaas Cengage Learning 2010
- 2. Analytical Mechanics An Introduction Antonio Fasano Stefano Marmi Oxford University Press 2006
- 3. DYNAMICS OF MULTIBODY SYSTEMS Third Edition Ahmed A. Shabana Cambridge University Press 2005

