

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-707
	part-time programme:	
Course title in Polish	Termodynamika II	
Course title in English	Thermodynamics II	
Valid from (academic year)	2024/2025	

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechanics and Heat Transfer
Course leader	dr hab. Robert Pastuszko, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific		
Course status		compulsory		
Language of instruction		English		
Semester of	full-time programme	Semester VII		
delivery	part-time programme			
Pre-requisites		Thermodynamics I		
Examination required (YES/NO)		YES		
ECTS value		3		

Mode of instruction		lecture	class	laborator y	project	seminar
No. of hours	full-time programme	15		15		
per semester	part-time programme					

LEARNING OUTCOMES

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	On completion of the course, students will have knowledge of the application of the second law of thermodynamics to energy conversion systems.	MiBM1_W02 MiBM1_W16
	W02	Students will have knowledge of the properties of gas mixtures, humid air and its transformations.	MiBM1_W02 MiBM1_W16

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze	Europejskie	Rzeczpospolita Dofinansowane p	rzez ****
	oju spoteczne	go Poiska Unię Europe Students will have fundamental knowledge about	лака * *
		beat engines and refrigeration cycles, and the	MIDM1 10/02
	W03	formulae expressing their efficiency understand the	
		tormulas expressing their enciency, understand the	
		basic theory of reingeration systems	
	W04	Students will have basic knowledge of the	MiBM1_W02
		combustion of solid, liquid and gaseous fuels.	MiBM1_W16
	W05	Students will have basic knowledge of heat transfer.	MiBM1_W02
	VV05		MiBM1_W16
		On completion of the course, students will have the	
	W06	skills to use procedures for energy balancing and	MIBM1_W02
		methods of energy transport between systems.	MIBM1_W16
		Students will be able to use mathematical tools to	MiBM1 LI01
		solve problems relating to the laws of	MiBM1_001
	U01	thermodynamics	MiBM1_000
	001	inermouynamics.	MiBM1_004 MiBM1_U20
			MiBM1_U21
	U02	Students will have basic skills related to operating	MiBM1_021
		an infrared camera and will be able to use basic	MiBM1_001 MiBM1_U03
		an initialed camera and will be able to use basic	MiBM1_003
			MiBM1_U20
-			MiBM1_U21
Skills		Students will be able to determine the parameters of	MiBM1_021
	U03	the humid air and the coefficients COP/EER	MiBM1_U03
			MiBM1_U04
			MiBM1_U20
			MiBM1_U21
		On completion of the course, students will have	MiBM1_U01
		knowledge of the application of the second law of	MiBM1_U03
	U04	thermodynamics to operate oppression systems	MiBM1_U04
	001	thermodynamics to energy conversion systems.	MiBM1_U20
			MiBM1_U21
		On completion of the course, students will be aware	
		of the impact on the natural environment of the way	MiRM1 K02
	K01	energy is generated and the operation of energy	MiBM1_K02
	NO I	energy is generated and the operation of energy	
Competence		generating devices (neat engines, etc.) and	
-			
		Students are aware of the need to follow the rules of	MIBM1_K02
	K02	teamwork.	MiBM1_K03
			MiBM1_K06

COURSE CONTENT

Type of	
instruction	Topics covered
lecture	

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundus dla Roz	ze Europejskie woju Społecznego	Rzeczpospolita Polska	Dofinansowane przez						
	Application of the second lav	of thermodynam	ics to energy conversion systems.						
	Thermal efficiency of heat en	gines, coefficient	of performance of heat pumps and						
	energy efficiency rating of refrig	gerators and air co	nditioners.						
	Examples of gas power cycles refrigerators. Heat pumps. Pro	s. Compressors. Hoperties of refrigeration	leat pipes. Refrigeration cycles and ants, fluorinated greenhouse gases,						
	p-h chart, refrigerant saturati	on tables, and c	hart of a single-stage compressor						
lecture	refrigeration system. Basic con	ponents of a refrig	geration system.						
	Gas mixtures. Van der Waals	Gas mixtures. Van der Waals equation. The Clapevron equation and the Maxwell							
	relations.	•							
	Dry and atmospheric air. Specific and relative humidity. Mollier diagram. Examples of								
	air conditioning processes.								
	Basic information on heat transfer (conduction, convection, radiation, overall heat								
	transfer), thermal resistance cc	oncept.							
	Basic information about fuels a	nd combustion.							
	Temperature measurement. De	etermination of the	temperature field using the IR						
	method. Pressure measuremen	method. Pressure measurement. Heat pipe. Boyle - Mariotte law (isothermal							
laboratory	process). Isochoric process. De	ependence of the s	state of matter on temperature and						
	pressure. Determination of the	calorimeter consta	Int. Determination of the heat						
	pump's coefficiency ratio (EEP)	ice (COP) and/or t	ne reingerator/air conditioner's						
	energy eniciency ratio (EER).								

ASSESSMENT METHODS

Outcome		Methods of ass	essment <i>(Ma</i>	rk with an X wh	ere applicable)
code	Oral examination	Written examination	Test	Project	Report	Other
W01		x				
W02		x				
W03		x				
W04		x				
W05		x				
W06		x				
U01		x				
U02		x			х	
U03		x			х	
U04		x			x	
K01						x
K02						х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria					
lecture	examination assessment	Examination in the form of an open-ended question test. The overall mark for the course is dependent on the number of points obtained for the coursework assignments. The pass mark is a minimum of 51 points. The highest mark 'very good' is awarded for 90-100 points.					
laboratory	non-examination assessment	The pass mark is the post-lab reports					

OVERALL STUDENT WORKLOAD

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego Rzeczpospolita Polska ECTS weighting Dofinansowane przez Unię Europejską

		Student workload									Unit	
No.	Activity type		full-time programme			part-time programme						
1		L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	h
1.	Scheduled contact hours	15		15								
2.	Other contact hours (office hours, examination)	4	4 2									h
3.	Total number of contact hours			36								h
4.	Number of ECTS credits for contact hours	1,4									ECTS	
5.	Number of independent study hours	39							h			
6.	Number of ECTS credits for independent study hours		1,6							ECTS		
7.	Number of practical hours	38								h		
8.	Number of ECTS credits for practical hours	1,5								ECTS		
9.	Total study time	75					h					
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time		3						ECTS			

READING LIST

- 1. Whaley P.B., Basic Engineering Thermodynamics, Oxford Science Publications, Oxford 1999
- 2. Logan E., Jr., Thermodynamics and Applications, Marcel Dekker, Inc., 1999
- 3. Cengel Y.A., Boles M.A.: Thermodynamics an Engineering Approach, McGraw-Hill, 2015
- 4. van Wylen G., Sonntag R., Borgnakke C., Fundamentals of Classical Thermodynamics, IV ed., John Wiley & Sons, 1993
- 5. Bayazitoglu, Y. Ozisik, Necati M.: Elements of Heat Transfer . McGraw-Hill Book Company, New York, 1988
- 6. Howell, J. R. : Fundamentals of engineering thermodynamics, New York McGraw-Hill Book Company, 1987
- 7. Moran M. J., Shapiro H. N.: Fundamentals of engineering thermodynamics, John Wiley & Sons, 1998

