

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme: M#2-S1-ME-602					
	part-time programme:					
Course title in Polish	Termodynamika I					
Course title in English	Thermodynamics I					
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechanics and Heat Transfer
Course leader	dr hab. Robert Pastuszko, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific				
Course status		compulsory				
Language of instruction		English				
Semester of	full-time programme	Semester VI				
delivery	part-time programme					
Pre-requisites						
Examination required (YES/NO)		NO				
ECTS value		2				

Mode of instruction		lecture	class	laborator y	project	seminar
No. of hours	full-time programme	15	15			
per semester	part-time programme					

LEARNING OUTCOMES

Category of outcome	ory of Outcome code Course learning outcomes		Corresponding programme outcome code		
Knowledge	W01	On completion of the course, students will have basic knowledge on energy, thermodynamic system and thermodynamic parameters, thermodynamic equilibrium, work and heat as methods of energy transport between systems.	MiBM1_W02 MiBM1_W16		

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze dla Rozw	Europejskie oju Społeczne	go Polska Unie Europe	orzez *****
	W02	Students will have skills concerning the first law of thermodynamics for closed and open (control volume) systems.	MiBM1_W02 MiBM1_W16
	W03	Students will have fundamental knowledge of the ideal gas equation, polytropic processes, and characteristic processes.	MiBM1_W02 MiBM1_W16
	W04	Students understand the concept of heat engine and refrigeration/heat pump cycle	MiBM1_W02 MiBM1_W16
	W05	Students will be familiar with the following terms: phase change processes, critical parameters, and triple point.	MiBM1_W02 MiBM1_W16
	W06	Students have a basic understanding of renewable energy sources.	MiBM1_W02 MiBM1_W16
	U01	Students will have the skills to utilise the procedures for energy balance and the methods of energy transport between systems.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U02	Students will be able to utilise mathematical tools to solve problems related to the principles of thermodynamics. A student can interpret the results.	 MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
Skills	U03	Students will have the skills to compute in the field of typical issues of heating of a system by work transfer or by heat transfer.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U04	Students will have the ability to utilize the ideal gas equation.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U05	Students will be able to present graphs of thermodynamic processes	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	K01	Students will be aware of the method of generating energy and the operation of energy devices (heat engines, etc.) in the natural environment	MiBM1_K02 MiBM1_K03 MiBM1_K06
Competence	K02	Students are aware of the need to follow the rules of teamwork.	MiBM1_K02 MiBM1_K03 MiBM1_K06

COURSE CONTENT

Type of	
instruction	Topics covered
lecture	

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundus dla Roj	sze Europejskie zwoju Społecznego	Rzeczpospolita Polska	Dofinansowane przez Unie Europeiska	***
lecture	Basic terms and definitions: thermodynamic equilibrium, and cycles, types of processe Work and heat, moving bo internal energy, and specifi systems. The first law of thermodyn reversible and irreversible pr as a function of the state. Ca engine, refrigeration and hear Phases of a pure substand saturated vapour, superhear pressure, property diagrams sources.	energy, thermodyna units. The zeroth la es. undary work. Ideal c heat. The first la amics for open sy rocesses, the secon arnot cycle and reve t pump cycles. ce, saturated liquid ated vapour, satura for phase-change	amic system, properties, aw of thermodynamics. gas equation of state, aw of thermodynamics rstems (control volume) id law of thermodynamic rsed Carnot cycle, the C , saturated liquid-vapor ation temperature and processes. Unconventio	state and Processes , enthalpy, for closed). Entropy, cs, entropy arnot heat ur mixture, saturation nal energy
class	Thermodynamic parameters, thermodynamics. Basic energy Processes of ideal gases. The use of specific heat to calcula of thermodynamics for open so machines: nozzle, turbine. Ca	physical properties gy balances. Ideal ga ne first law of thermo ate changes in intern systems: the law of o arnot cycle, heat end	of fluids, units used in as equation of state. Hea odynamics for closed sys al energy and enthalpy conservation of energy, f gine cycles.	at and work. tems - the The first law low

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)									
code	Oral examination	Written examination	Test	Project	Report	Other				
W01			х							
W02			х							
W03			х							
W04			х							
W05			х							
W06			х							
U01			х							
U02			х							
U03			х							
U04			х							
U05			х							
K01						х				
K02						x				

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final in-class test.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.

OVERALL STUDENT WORKLOAD

ECTS weighting

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Ċ	Fundusze Europejskie dla Rozwoju Społecznego		Rzeczpospolita Dof Polska			finansowane przez Unię Europejską				***	****		
				Student workload								*	Unit
No.	Activity type			fu	ll-tin	ne			ра	rt-tir	ne		
				pro	gram	nme			pro	gram	nme		
1	Scheduled contact hours		L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	h
••			15	15									
2.	Other contact hours (office hours, examination)	,	2	2									h
3.	Total number of contact hours				34								h
4.	Number of ECTS credits for con hours	ntact	1,4									ECTS	
5.	Number of independent study h	nours			16								h
6.	Number of ECTS credits for independent study hours				0,6								ECTS
7.	Number of practical hours				25								h
8.	Number of ECTS credits for practical hours				1,0								ECTS
9.	Total study time				50								h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	9					2	2					ECTS

READING LIST

- 1. Whaley P.B., Basic Engineering Thermodynamics, Oxford Science Publications, Oxford 1999
- 2. Logan E., Jr., Thermodynamics and Applications, Marcel Dekker, Inc., 1999
- 3. Cengel Y.A., Boles M.A.: Thermodynamics an Engineering Approach, McGraw-Hill, 2015
- 4. van Wylen G., Sonntag R., Borgnakke C., Fundamentals of Classical Thermodynamics, IV ed., John Wiley & Sons, 1993
- 5. Bayazitoglu, Y. Ozisik, Necati M.: Elements of Heat Transfer . McGraw-Hill Book Company, New York, 1988
- 6. Howell, J. R. : Fundamentals of engineering thermodynamics, New York McGraw-Hill Book Company, 1987
- 7. Moran M. J., Shapiro H. N.: Fundamentals of engineering thermodynamics, John Wiley & Sons, 1998

