

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-406
	part-time programme:	
Course title in Polish	Mechanika Płynów	
Course title in English	Fluid Mechanics	
Valid from (academic year)	2024/2025	

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechanics and Heat Transfer
Course leader	Prof. dr hab. inż. Magdalena Piasecka
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Facul- ty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific			
Course status		compulsory			
Language of instru	iction	English			
Semester of de- livery	full-time programme	Semester IV			
	part-time program- me				
Pre-requisites					
Examination required (YES/NO)		YES			
ECTS value		4			

Mode of instru	ction	lecture	class	laboratory	project	seminar
No. of hours	full-time pro- gramme	15	15	15		
per semester	part-time pro- gramme					

LEARNING OUTCOMES

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme out- come code
	W01	The student has organised knowledge in the field of fluid properties, including a familiarity with basic physical quantities and their units. The student is aware of the differences between ideal and real fluids, as well as the types of refrigerants and greenhouse gases (especially fluorinated ones).	MiBM1_W02
	W02	The student possesses organised knowledge in the field of fluid statics, including familiarity with basic statics equations, recognition of pressure measure- ment devices, knowledge of hydrostatic pressure determination; understanding of Archimedes' princi- ple; the student understands the differences be- tween the absolute pressure vacuum and the gauge pressure and has knowledge of the relative equilib- rium.	MiBM1_W02
	W03	The student understands fundamental terms and definitions related to fluid kinematics and has knowledge of the continuity equation.	MiBM1_W02
Knowledge	W04	The student has organised knowledge in the field of fluid dynamics, including topics related to mass and volumetric flow rates. The student is familiar with the Bernoulli principle and its applications. The student distinguishes between laminar and turbulent flows and has knowledge of critical Reynolds numbers.	MiBM1_W02
	W05	The student has organised knowledge in the field of energy losses that occur during fluid flow and is familiar with methods for their determination. The student has knowledge about the flow of refrigerants in closed conduits and their impact on the ozone layer. The student understands the concept of the boundary layer, is aware of issues related to the flow of solid bodies through viscous fluids, and has basic knowledge related to the field of aerodynam- ics.	MiBM1_W02
	W06 The student has a basic knowledge on regulations related to fluorinated greenhouse gases, especially on restrictions and requirements established by EU directives, regulations, and national legislation.		MiBM1_W05
	U01	The student has the ability to determine the density of a mixture characterised by the specified mass or volume fractions. The student is able to calculate changes in volume, viscosity, or fluid density when pressure and/or temperature change and to use the Clapeyron equation in gas-related tasks.	MiBM1_U12
Skills	U02	The student has the ability to calculate the viscosity of the fluid through experimental measurements of shear stress as a function of shape deformation using a rotational viscometer.	MiBM1_U01 MiBM1_U12
	U03	U03 Using a rotational viscometer. The student is able to apply Pascal's principle, cal- culate the hydrostatic pressure in closed vessels, and use the equation of fluid equilibrium as well as the law of connected vessels.	

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

WMiBM

Dofinansowane przez Unię Europejską

	U04	The student is capable of determining the free sur- face equation for relative equilibrium (rotational mo- tion around a vertical axis), also experimentally.	MiBM1_U01 MiBM1_U12	
	U05	The student is able to apply the Bernoulli principle to ideal and real fluid flow in a closed conduit. The student has the ability to determine energy losses during the flow of real fluid in a pipeline.	MiBM1_U01 MiBM1_U12	
	U06	U06The student is able to determine critical Reynolds numbers through experimentation.U06The student has skills to determine typical charac- teristics of a flow machine - a pump, on the basis of experiment.		
	U07	The student can interpret the requirements of regu- lations regarding fluorinated greenhouse gases.	MiBM1_U16	
	K01	The student is ready for a critical assessment of existing knowledge and the need to acquire new information both from literature and from experts in the field of mechanics and mechanical engineering.	MiBM1_K01	
Competence	K02	The student is aware of the environmental impact of fluid storage and transportation methods. The stu- dent also recognises the importance of greenhouse gases in the environment and the associated re- sponsibilities.	MiBM1_K02	
	K03	The student acknowledges the need for acquiring new information through independent supplementa- tion and expansion of knowledge in the field of physical phenomena, measurement of physical quantities, particularly in fluid mechanics.	MiBM1_K05	

COURSE CONTENT

Type of in- struction lecture	Topics covered
lecture	The subject of fluid mechanics. Real and ideal fluids. Physical properties of fluids. Refrigerants and greenhouse gases, particularly fluorinated, and their impact on the ozone layer and environmental regulations. Forces acting on fluids. Statics of fluids. Basic equation of fluid statics. Pressure measurement. Gauge pressure, vacuum pressure and absolute pressure. Pascal's law. Manometers. Hydrostatic pressure on surfaces submerged in a fluid. Stevin's paradox. Connected vessels. Relative equilibrium in linear motion and rotating vessels. Archimedes' principle. Equilibrium of floating bodies. Static equilibrium of compressible fluids. Basics of fluid kinematic. Description of fluid motion. Continuity equation. Classification of flows. Steady flow. Fluid dynamics, Euler's equation of motion. Bernoulli principle. Applications of the Bernoulli principle. Bernoulli principle for real fluids. Dynamic equation of motion for a viscous fluid (Navier-Stokes equations). Flows in closed conduits (internal flow). Hagen-Poiseuille law. Laminar and turbulent flows. Critical Reynolds numbers. Energy losses by pipe friction and head losses. Flow similarity. Typical problems in hydraulic calculations. Flows in open channels. The concept of the boundary layer, flow over bodies (external flow). Scope of aerodynamics.

Dofinansowane przez Unię Europejską

	Solving problems in the scope covered by the lecture, namely:						
	Physical properties of fluids: mass, density, determination of fluid density for a						
	given mass/volume fraction of a mixture; application of the Clapeyron equa-						
	tion to issues concerning ideal gases.						
	 Physical characteristics of fluids: compressibility, expansibility, and viscosity. Basic issues of fluid statics: thrust and hydrostatic prossure. 						
class	 Law of connected vessels in fluid statics problems 						
01033	 Mass/volume flow rate: continuity equation. Bernoulli principle in calculations 						
	regarding the flow of an ideal fluid.						
	 Energy losses during the flow of a real fluid; Bernoulli principle in calculations 						
	regarding the flow of a real fluid in closed conduits.						
	 Application of Bernoulli principle in issues during the flow of a real fluid - se- 						
	lected topics.						
	Completion of 6 laboratory exercises as follows:						
	Completion of 6 laboratory exercises as follows:Measurement of tangential stresses in a liquid.						
	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. 						
	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. 						
	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. 						
laboratory	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. Head losses: determination of the head loss factor for the sudden change of area 						
laboratory	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. Head losses: determination of the head loss factor for the sudden change of area Determining of the characteristics of a selected flow machine (a pump). 						
laboratory	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. Head losses: determination of the head loss factor for the sudden change of area Determining of the characteristics of a selected flow machine (a pump). Additionally: 						
laboratory	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. Head losses: determination of the head loss factor for the sudden change of area Determining of the characteristics of a selected flow machine (a pump). Additionally: Familiarisation of students with principles of processing experimental data and 						
laboratory	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. Head losses: determination of the head loss factor for the sudden change of area Determining of the characteristics of a selected flow machine (a pump). Additionally: Familiarisation of students with principles of processing experimental data and error analysis; 						
laboratory	 Completion of 6 laboratory exercises as follows: Measurement of tangential stresses in a liquid. Relative equilibrium of liquids. Flow visualization - critical Reynolds number. Losses by pipe friction: determination of Darcy friction factor during the flow of water in the close loop. Head losses: determination of the head loss factor for the sudden change of area Determining of the characteristics of a selected flow machine (a pump). Additionally: Familiarisation of students with principles of processing experimental data and error analysis; Refrigerants and fluorinated greenhouse gases – issues related to leak tightness, 						

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)									
code	Oral examina- tion	Written exa- mination	Test	Project	Report	Other				
W01		Х								
W02		Х								
W03		Х								
W04		Х								
W05		Х								
W06		Х								
U01			Х							
U02					Х					
U03			Х							
U04					Х					
U05			Х		Х					
U06					Х					
U07						Х				
K01					Х					
K02						X				
K03					X					

ASSESSMENT TYPE AND CRITERIA

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Mode of instruction	Assessment type	Assessment criteria
lecture	examination as- sessment	The pass mark is a minimum of 50% for all the in-class tests.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.
laboratory	non-examination assessment	Approval of reports on individual laboratory activities. The final grade is the arithmetic mean of the test grades for each laboratory exercise.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
					Stud	lent	work	load				Unit
No.	Activity type	full-time program- me			part-time program- me							
4		L	С	Lb	Р	S	L	С	Lb	Р	S	h
1.	Scheduled contact nours	15	15	15								n
2.	Other contact hours (office hours, examination)	4	2	2								h
3.	Total number of contact hours			53								h
4.	Number of ECTS credits for contact hours	2,1							ECTS			
5.	Number of independent study hours		47							h		
6.	Number of ECTS credits for inde- pendent study hours		1,9							ECTS		
7.	Number of practical hours		67								h	
8.	Number of ECTS credits for practi- cal hours	2,7								ECTS		
9.	Total study time	100				h						
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time					4	4					ECTS

READING LIST

1. Nakayama Y., Boucher R.F.: Introduction to Fluid Mechanics, Butterworth Heinemann 2002.

2. Cengel Y. A., Cimbala J. M.: Fluid Mechanics. Fundamentals and Applications, McGraw-Hill Inc. 2014.

3. Munson B. R., Young D. F., Okiischi T. H., Huebsch W. W.: Fundamental of Fluid Mechanics, John Wiley & Sons Inc., 2009.

4. Regulation (EU) 2024/573 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) No 517/2014 and Regulation (EU) 2024/590 on substances that deplete the ozone layer, and repealing Regulation (EC) No 1005/2009 (https://perma.cc/QS32-GEZT)

5. Laboratory of Fluid Mechanics- Instructions for each laboratory meeting.

