

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-405A			
	part-time programme:				
Course title in Polish	Programowanie w prakty	vce inżynierskiej			
Course title in English	Application of programm	ning in engineering			
Valid from (academic year)	2024/2025				

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Machine Design and Machining
Course leader	dr hab. inż. Jarosław Gałkiewicz, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific
Course status		elective
Language of instruction		English
Semester of	full-time programme	Semester IV
delivery	part-time programme	
Pre-requisites		
Examination required (YES/NO)		NO
ECTS value		3

Mode of instruction		lecture	class	laborator y	project	seminar
No. of hours	full-time programme	15		30		
per semester	part-time programme					

LEARNING OUTCOMES

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Category of outcome	code Course learning outcomes		Corresponding programme outcome code
	W01	Knows and understands advanced numerical methods used in engineering practice.	MiBM1_W01
Knowledge	W02	Knows and understands the structure of the Python language and how it can be used to solve mechanical engineering problems.	MiBM1_W03
	U01	Is able to apply knowledge of programming to solve typical engineering tasks.	MiBM1_U01
Skills	U02	Can use the capabilities of the Python language and high-level programming language to present the results of his/her work with particular emphasis on creating data visualizations (creating graphs).	MiBM1_U02 MiBM1_U05
	U03	Is able to write extensive scripts using conditional, selection, and repetition instructions, using, among others, operations performed on matrices and vectors.	MiBM1_U02 MiBM1_U05
Competence	K01	Is ready to independently complete the knowledge of using the Python language for engineering analysis.	MiBM1_K03

COURSE CONTENT

Type of instruction lecture	Topics covered
lecture	A brief history of the Python language. Structure of the language, constants, variables, and basic instructions. Data flow control. Functions, lists, and other complex data structures. Debugging. Use of external modules. Modules useful in engineering practice. Popular algorithms and their implementation in Python.
laboratory	Creating programs related to the content presented in the lecture: input/output instructions, conditional instructions, loops, operations on data structures, debugging codes, working with modules: file operations, working with PDF files, MsExcel, MsWord, processing image files, creating graphs, mouse and keyboard control. Exercises using high-level programming language on matrices and vectors, flow controls, defining functions, creating 2D graphs, and solving equations.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)								
code	Oral examination	Written examination	Test	Project	Project Report				
W01						Х			
W02						Х			
U01			Х	Х					
U02			Х	Х					
U03			Х	Х					
K01			Х	Х					

ASSESSMENT TYPE AND CRITERIA

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Dofinansowane przez Unię Europejską

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final test
laboratory	non-examination assessment	A pass marks for all control tasks (project and tests). The final grade is the arithmetic average.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
			Student workload									Unit
No.	Activity type	full-time programme						•	rt-tir			
			C	Lb	P	S	programmeLCLbPS				S	
1.	Scheduled contact hours		•	30	•	0	-	•	L.,	•	0	h
2.	Other contact hours (office hours, examination)	2										h
3.	Total number of contact hours	49						h				
4.	Number of ECTS credits for contact hours		2,0									ECTS
5.	Number of independent study hours		26									h
6.	Number of ECTS credits for independent study hours		1,0									ECTS
7.	Number of practical hours			50								h
8.	Number of ECTS credits for practical hours	2,0						ECTS				
9.	Total study time	75							h			
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time					:	3					ECTS

READING LIST

1. https://www.python.org/doc/

2. Automatyzacja nudnych zadań z Pythonem. Nauka programowania. Wydanie II, Al Sweigart, Helion, 2021.

3. Złam ten kod z Pythonem. Jak tworzyć, testować i łamać szyfry. Al Sweigart, Helion, 2021.

4. Programowanie w Pythonie dla średnio zaawansowanych. Najlepsze praktyki tworzenia czystego kodu. Al Sweigart, Helion, 2021.

5. Math adventures with Python, Peter Farrell, No Starch Press, Inc.2019.

6. Modeling and simulation in python. An Introduction for Scientists and Engineers Allen B. Downey. No Starch Press, Inc.2019.

7. Dive into algorithms. Bradford Tuckfield, No Starch Press, Inc.2021.

8. MATLAB i Simulink. Mrozek B., Mrozek Z. Poradnik użytkownika. Wydawnictwo Helion, 2017.

9. Technika obliczeń inżynierskich w MATLABIE. Wciślik M., Wydawnictwo Politechniki Świętokrzyskiej, 2021.

10. https://www.mathworks.com/

