

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme: part-time programme:	M#2-S1-ME-304					
Course title in Polish	Podstawy spawalnictwa	Podstawy spawalnictwa					
Course title in English	Basics of welding						
Valid from (academic year)	2024/2025						

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Metal Science and Manufacturing Processes
Course leader	dr inż. Bartłomiej Szwed
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific
Course status		compulsory
Language of instruct	tion	English
Semester of	full-time programme	Semester III
delivery	part-time programme	
Pre-requisites		
Examination required (YES/NO)		NO
ECTS value		2

Mode of instrue	ction	lecture	class	laborator y	project	seminar
No. of hours per semester	full-time programme	15		15		
	part-time programme					

LEARNING OUTCOMES

Category of outcome	Outcome code		Corresponding programme outcome code
---------------------	-----------------	--	--

Dofinansowane przez Unię Europejską

Knowledge	W01	The student has in-depth knowledge of the nomenclature, construction, principle of operation of various types of machinery, welding equipment, determination of basic welding parameters as well as technical solutions used in various areas of mechanical and mechanical engineering, e.g. in the automotive industry, in armament engineering, industrial mould design, product design	MiBM1_W06		
	W02	Has the knowledge necessary to organize work in accordance with health and safety, environmental protection and ergonomics for welding processes	MiBM1_W19		
Skills	U01	Students will be able to apply knowledge from the field of basic sciences to formulate and solve engineering tasks used in welding techniques, both at the stage of design, construction, materials			
	U02	Can design a simple technological process in the area of mechanics and mechanical engineering and select appropriate machines and equipment for this purpose	MiBM1_U08		
Competence	K01	K01 Is ready to critically evaluate his knowledge and the need to acquire new information both from the literature and from experts in the field of bonding processes			
	K02	Independently completes and expands knowledge in the field of bonding techniques, takes a critical approach to the knowledge possessed. Understands the need for and knows the possibilities of continuous improvement (studies of the second and third degree, postgraduate studies, courses) in order to improve professional, personal and social competences.	MiBM1_K03		

COURSE CONTENT

Type of instruction lecture	Topics covered
lecture	Types and properties of welding heat sources. General classification of welding processes. Welding consumables. Structure of welded joints and their technological properties. Weldability and welding technology of metals and alloys. Welding and brazing processes. Quality control in welding
laboratory	Gas welding and thermal cutting. Manual arc welding with covered electrodes. Mechanised MIG/MAG welding. TIG welding. Submerged arc welding under flux. Welding and brazing processes. Quality control in welding.

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)									
code	Oral examination	Report	Other							
W01			Х							
W02			Х		Х					
U01			Х		Х					
U02					Х					
K01						Х				
K02						Х				

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	non-examination assessment	Obtaining at least 50% of the points from the colloquium in the last class.
laboratory	non-examination assessment	Achievement of at least 50% of the marks in the colloquia of the individual exercises. Approval of reports on individual laboratory exercises.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
			Student workload									Unit
No.	Activity type	full-time programme					part-time programme					
			C	Lb	Р	S	L	C	Lb	P	S	_
1.	Scheduled contact hours	15		15								h
2.	Other contact hours (office hours, examination)	2	2 2									h
3.	Total number of contact hours	34									h	
4.	Number of ECTS credits for contact hours	1,4							ECTS			
5.	Number of independent study hours		16							h		
6.	Number of ECTS credits for independent study hours		0,6							ECTS		
7.	Number of practical hours	25						h				
8.	Number of ECTS credits for practical hours	1,0					ECTS					
9.	Total study time	50				h						
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time					2	2					ECTS

READING LIST

1. Ferenc K., Spawalnictwo. WNT, Warszawa 2018

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

2. Klimpel A.: Spawanie, zgrzewanie i cięcie metali. Technologie. WNT, Warszawa 2005

- 3. Jakubiec M., Lesiński K., Czajkowski H.: Technologia konstrukcji spawanych. WNT, Warszawa 1983
- 4. Praca zbiorowa. Poradnik inżyniera spawalnictwo. T1 i T2. WNT, Warszawa 2017
- 5. Instrukcje do ćwiczeń laboratoryjnych.
- 6. Ferenc K., Ferenc J.: Konstrukcje spawane. Połączenia. WNT, Warszawa 2019
- 7. Butnicki S.: Spawalność i kruchość stali. WNT, Warszawa 1991
- 8. Pilarczyk J., Pilarczyk J.: Spawanie i napawanie elektryczne metali. Śląsk, Katowice 1996

9. Nowacki J. i inni: Lutowanie w budowie maszyn. WNT, Warszawa 2007

10. Ferenc K..: Podręcznik spawania. Zagadnienia ogólne. Agenda Wydawnicza SIMP Przegląd Spawalnictwa, Warszawa 2016

11. Ferenc K..: Podręcznik spawania aluminium i jego stopów metoda TIG. Agenda Wydawnicza SIMP Przegląd Spawalnictwa, Warszawa 2017

12. Ferenc K..: Podręcznik spawania aluminium i jego stopów metoda MIG. Agenda Wydawnicza SIMP Przegląd Spawalnictwa, Warszawa 2018

13. Mizerski J.: Spawanie gazowe i cięcie tlenowe. Wydawnictwo REA s.j., Warszawa 2010

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23