

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-211					
	part-time programme:						
Course title in Polish	Podstawy automatyki						
Course title in English	Fundamentals of Control Engineering						
Valid from (academic year)	2024/2025						

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechatronics and Weapons Engineering
Course leader	dr hab. inż. Piotr Woś, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type			р	rogramme-	specific							
Course status			compulsory									
Language of ir	struc	tion		Ε	English							
Semester of		full-time prog	gramme	Semester II								
delivery		part-time pro	ogramme									
Pre-requisites												
Examination re	quire	d (YES/NO)		YES								
ECTS value				4								
Mode of instruction lecture			class	laboratory	project	seminar						
No. of hours	full-time15No. of hoursprogramme			15	15							
per semester part-time programme												

LEARNING OUTCOMES

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code	
	W01	The student has a well-organised advanced knowledge of the types of automation systems, the principles of their operation and the purpose of their use.	MiBM1_W04	
	W02	The student will have structured advanced knowledge in the modelling and simulation of mechanical, electrical and fluid systems, and the analysis of these systems in the time and frequency domains.	MiBM1_W04 MiBM1_W09 MiBM1_W16	
Knowledge	W03	The student has an organized and advanced knowledge of block diagram algebra.	MiBM1_W04	
	W04	The student has structured advanced knowledge related to stability testing and quality assessment of automatic control systems.	MiBM1_W04	
	W05	The student has an advanced knowledge of the possibilities of analysis and synthesis of automation systems, as well as of the measurement methods used in these systems.	MiBM1_W04 MiBM1_W12	
	U01	The student will be able to use the Laplace transform in the analysis of automation elements and systems, determine the response of the system to given inputs and the frequency characteristics.	MiBM1_U01 MiBM1_U07 MiBM1_U12	
Skills	U02	The student will be able to determine the equivalent transmittance of the system, study its stability and determine the values of quality indicators for a given automation system.	MiBM1_U07 MiBM1_U12	
	U03	The student will be able to build a simulation model of an element or automation system and determine its response to a given input, and then synthesise it using basic methods.	MiBM1_U02 MiBM1_U07 MiBM1_U12	
Competence	K01	The student is prepared to critically evaluate his or her knowledge and to improve professional qualifications, including through second and third cycle studies, postgraduate studies and attending professional courses.	MiBM1_K01 MiBM1_K03	
	K02	The student is aware of the need to constantly update knowledge in the field of automation systems due to its dynamic development.	MiBM1_K01 MiBM1_K03 MiBM1_K04	

COURSE CONTENT

Type of instruction	Topics covered
lecture	

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

	Basic concepts of automation, general diagrams of automation systems and					
	classification of automation systems, examples of automation systems. Description					
	of linear elements and systems. Laplace transform, operator transfer function,					
	determination of static characteristics and response to a given excitation from the					
	operator transfer function.					
	Static and dynamic properties of basic linear elements: proportional, inertial,					
	integrating, differentiating, oscillating and delaying, and their examples.					
	Flowchart algebra. Basic connections, transformation of block diagrams, methods of					
	determining equivalent transfer functions of complex systems.					
	Frequency characteristics. Spectral transmittance, types of characteristics, frequency					
looturo	characteristics of basic elements, logarithmic characteristics for a series connection,					
lecture	basic methods of experimental determination of frequency characteristics.					
	Characteristics of typical control objects. Static and astatic objects and their step and					
	frequency characteristics, examples of objects.					
	PID controllers. Structures and characteristics of PID controllers.					
	Stability of Linear Automation Systems. General stability condition, stability criterion:					
	Hurwitz.					
	Quality of automation systems. Static accuracy, time waveform quality indicators,					
	frequency response indicators, integral quality indicators.					
	Selected problems of synthesis of linear automation systems. Choice of controller					
	type, choice of controller settings according to the main characteristics of the					
	transient waveform, Ziegler-Nichols method.					
	Solving problems in the field of:					
	- Determination of equations of automation elements,					
	 Laplace transform and its use in automation, 					
class	 Determining the response of systems to a given input, 					
01000	- Flowchart algebra,					
	- Frequency characteristics,					
	- Stability of linear systems,					
	- Quality evaluation of automation systems.					
	Carry out laboratory exercises on:					
	- Modelling elements and systems,					
	 Determining the characteristics of basic elements 					
laboratory	- Determining frequency characteristics					
	- Determining the characteristics of PID controllers,					
	 Identifying the parameters of the controlled object, 					
	- Testing the automatic control system.					

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)								
code	Oral examination	Written examination	Test	Project	Report	Other			
W01		Х							
W02		Х							
W03		Х							
W04		Х							
W05		Х							
U01			Х		Х				
U02			Х		Х				
U03			Х		Х				
K01						Х			

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria					
lecture	examination	Successful completion of the final examination. Obtain a					
	assessment	minimum of 50% of the points.					
class	non-examination	The pass mark is a minimum of 50% for all the in-class					
	assessment	tests.					
laboratory	non-examination	Positive completion of course reports. The final grade is the					
	assessment	arithmetic average.					

OVERALL STUDENT WORKLOAD

ECTS weighting												
			Student workload									
No.	Activity type		fu	II-tin	ne Nmo		part-time					
1.	1. Scheduled contact hours		C	LD	Р	3	L	C	LD	Р	3	h
		15	15	15								
2.	Other contact hours (office hours, examination)	4	4 2 2									h
3.	Total number of contact hours		53				h					
4.	Number of ECTS credits for contact hours	2,1									ECTS	
5.	Number of independent study hours		47								h	
6.	Number of ECTS credits for independent study hours		1,9								ECTS	
7.	Number of practical hours		67								h	
8.	Number of ECTS credits for practical hours		2,7							ECTS		
9.	Total study time	100					h					
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time		4							ECTS		

READING LIST

- 1. Chłędowski M., Pieniążek J.: Podstawy automatyki: w ćwiczeniach i zadaniach, Oficyna Wydawnicza Politechniki Rzeszowskiej, 2004.
- 2. Chłędowski M.: Wykłady z automatyki dla mechaników, Oficyna Wydawnicza Politechniki Rzeszowskiej, 2003.
- 3. Horla D.: Podstawy automatyki: ćwiczenia rachunkowe. Cz. 1, Wydawnictwo Politechniki Poznańskiej, 2014.
- 4. Siemieniako F.: Podstawy automatyki z zadaniami, Wydawnictwa Politechniki Białostockiej, 1996.
- 5. Mazur E., Kozłowski J.: Podstawy automatyki, Wydawnictwa Politechniki Częstochowskiej, 1995.

Rzeczpospolita Polska

Dofinansowane przez Unię Europejską

- 6. Grzelka J., Mazur E., Tutak W.: Podstawy automatyki: zbiór zadań z rozwiązaniami, Wydawnictwa Politechniki Częstochowskiej, 2000.
- 7. Kaczorek T.: Podstawy automatyki, Politechnika Warszawska, 1966.
- Żelazny M.: Podstawy automatyki, PWN, 1976.
 Amborski K.: Teoria sterowania w ćwiczeniach, PWN, 1978.
- 10. Stefański T.: Teoria sterowania t. 1, Wydawnictwo Politechniki Świętokrzyskiej Świętokrzyskiej, 2002.

