

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-203
	part-time programme:	
Course title in Polish	Mechanika ogólna l	
Course title in English	Engineering Mechanics I	
Valid from (academic year)	2024/2025	

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechanics and Heat Transfer
Course leader	dr inż. Jan Kyzioł
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Facul- ty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific				
Course status		compulsory				
Language of instruction		English				
Semester of delive-	full-time programme	Semester II				
ry	part-time programme					
Pre-requisites						
Examination required (YES/NO)		YES				
ECTS value		5				

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time pro- gramme	15	30	15		
per semester	part-time pro- gramme					

LEARNING OUTCOMES

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme out- come code
Knowledge	W01	The student knows and understands the basic prin- ciples of interactions between rigid bodies. Under- stands the phenomenon of friction. Knows the con- cepts: force, moment of force, couple of forces, moment of couple of forces, constraints, active force, reaction force, internal force, friction force. Has knowledge of the reduction and equilibrium conditions of convergent and arbitrary force systems and methods of determining centers of gravity.	MiBM1_W01 MiBM1_W02
	W02	The student has knowledge of the description of point motion. Knows the concepts: equation of motion, linear velocity and linear acceleration.	MiBM1_W01 MiBM1_W02
	W03 The student knows the mechanical quantities, k methods and IT tools ne perimental results.	The student knows the methods of measuring basic mechanical quantities, knows the computational methods and IT tools necessary to analyze the experimental results.	MiBM1_W01 MiBM1_W02 MiBM1_W12
	U01	The student is able to determine internal forces and reaction forces in plane and spatial systems of con- vergent and arbitrary forces, including cases involv- ing friction and rolling resistance, and is able to de- termine centers of gravity.	MiBM1_U01 MiBM1_U03
Skills	U02 t	The student is able to determine the velocities and accelerations of a point whose motion is determined by equations in rectangular coordinates or the equa- tion of motion on a track.	MiBM1_U01 MiBM1_U03
	U03 Is able to organize a work station in the laboratory and operate instruments and devices in accordance with the principles of safety, environmental protec- tion, ergonomics and fire protection regulations, and is able to work independently and in a team.		MiBM1_U17 MiBM1_U20
Compotonco	K01	K01 The student is ready to critically assess his/her knowledge and the need to improve professional qualifications (through second- and third-cycle studies, postgraduate studies, vocational courses).	
Competence	K02	The student is aware of the need to obtain new in- formation by independently supplementing and ex- panding knowledge in the field of mechanics and measurement of mechanical quantities.	MiBM1_K01 MiBM1_K03 MiBM1_K04

COURSE CONTENT

Type of in-	
struction	Topics covered
lecture	

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

lecture	Basic concepts of mechanics. Definitions of terms: rigid body, force, force systems, constraints, structure, mechanism. Axioms of statics. Force as a vector. Moment of force about a point and about an axis. Couple of forces. Force systems, reduction of force systems. Reduction and equilibrium conditions of a plane and spatial system of convergent forces. General plane system of forces: reduction and equilibrium conditions. General spatial system of forces: reduction and equilibrium conditions. The phenomenon of friction. Friction force. Rolling resistance. Cable friction. Mechanisms using the phenomenon of friction. Reduction and equilibrium conditions of the system of parallel forces. Center of gravity. Kinematics of a material point. Equations of point motion in rectangular coordinates. Equation of motion of a point on a track.
class	Solving tasks related to: reduction and equilibrium of a plane and spatial system of convergent forces, reduction and equilibrium of general plane system of forces, reduction and equilibrium of any spatial system of forces, friction, friction of cables, rolling resistance, determining the centers of gravity of lines, plane figures and solids. Solving problems in the field of point kinematics: determining the path, velocity and acceleration of a point whose equations of motion are defined in a rectangular coordinate system; determining the speed and acceleration of a point in natural coordinates.
laboratory	Performing 6 laboratory exercises including the following topics: measurement of forces in the rods of a flat truss; measurement of reaction forces in general plane system of forces; determining the coefficient of static and kinetic friction using an inclined plane; studies of the equilibrium of moments of force; experimental determination of the value of the moment of inertia; investigation of free vibrations of a damped linear oscillator.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)										
code	Oral examina- tion	Written exa- mination	Test	Project	Report	Other					
W01		Х									
W02		Х									
W03		Х									
U01			Х		Х						
U02			Х		Х						
U03					Х						
K01		Х									
K02					Х						

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	examination as- sessment	Successful completion of the final exam. Obtaining at least 50% of points
class	non-examination assessment	The pass mark is a minimum of 50% for two in-class tests.
laboratory	non-examination assessment	Positive completion of course reports. The final grade is the arithmetic average.

OVERALL STUDENT WORKLOAD

ECTS weighting

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Dofinansowane przez Unię Europejską

			Student workload									
No.	Activity type	full-time program- me me me							m-			
1	Schodulad contact hours	L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	h
1.		15	30	15								
2.	Other contact hours (office hours, examination)	4	4 2 2									h
3.	Total number of contact hours		68					h				
4.	Number of ECTS credits for contact hours	2,7									ECTS	
5.	Number of independent study hours	57								h		
6.	Number of ECTS credits for inde- pendent study hours		2,3							ECTS		
7.	Number of practical hours		94								h	
8.	Number of ECTS credits for practi- cal hours	3,8								ECTS		
9.	Total study time	125									h	
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	5					ECTS					

READING LIST

- 1. Dietmar Gross Werner Hauger Jörg Schröder Wolfgang A. Wall Nimal Rajapakse Engineering Mechanics 1 Statics, Springer Science+Business Media Dordrecht 2013
- 2. R Douglas Gregory Classical Mechanics Cambridge University Press 2006
- 3. J Wittenburg Kinematics Theory and Applications Springer 2016

