

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-109				
	part-time programme:					
Course title in Polish	Podstawy elektrotechniki					
Course title in English	Fundamentals of Electrica	I Engineering				
Valid from (academic year)	2024/2025					

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Automation and Robotics
Course leader	Prof. dr hab. inż. Dariusz Janecki
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		programme-specific
Course status		compulsory
Language of instruction		English
Semester of	full-time programme	Semester I
delivery	part-time programme	
Pre-requisites		
Examination required (YES/NO)		NO
ECTS value		3

Mode of instruction		lecture	class	laborator y	project	seminar
No. of hours	full-time programme	30	15			
per semester	part-time programme					

LEARNING OUTCOMES

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	The student knows and understands the basic laws of physics related to electric and magnetic fields, as well as the properties of electrical circuits.	MiBM1_W01 MiBM1_W02

Dofinansowane przez Unię Europejską

	W02	The student knows methods for analyzing linear DC and AC circuits, understands Kirchhoff's laws, Thevenin's and Norton's theorems and the superposition principle.	MiBM1_W04 MiBM1_W06
	W03	The student knows and understands the concepts of average, effective, and instantaneous values of electrical signals.	MiBM1_W04 MiBM1_W06
	W04	The student has basic knowledge of the operation of transformers and of three-phase circuits, understands the principles of the creation of a rotating magnetic field.	MiBM1_W04 MiBM1_W06
	W05	The student has basic knowledge basic knowledge of the construction and operating principles of induction motors, direct current (DC) motors, and electronically commutated motors.	MiBM1_W04 MiBM1_W06
	W06	MiBM1_W04 MiBM1_W06	
	U01	The student can calculate the forces acting between electric charges and the parameters of the electric field produced by a system of electric charges.	MiBM1_U01
Skille	U02	The student can calculate the resistance and conductance of a electric cables with defined dimensions and determine changes in resistance and conductance as a function of temperature.	MiBM1_U01
SKIIIS	U03	The student can calculate the values of currents and voltages in DC and AC circuits.	MiBM1_U01
	U04	The student can calculate power and energy in DC circuits.	MiBM1_U01
	U05 The student can calculate active, reactive, and apparent power in AC circuits and select capacitors for reactive power compensation.		MiBM1_U01
	K01	Is aware of the impact of the way electricity is produced and used on the natural environment.	MiBM1_K01 MiBM1_K02
Competence	K02	The student understands the necessity of conducting rational electrical energy management for economic reasons.	MiBM1_K01 MiBM1_K02

COURSE CONTENT

Type of	
instruction	Topics covered
lecture	

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

lecture	 Basic electrical quantities: electric charge, electric current, Coulomb's law, electric field, electric potential and voltage, Ohm's law, resistance and conductance of conductors, dependence of resistance on temperature, work and power of electric current, sources of electrical energy. DC circuits: graphical symbols of circuit elements, Kirchhoff's laws, voltage and current sources, series and parallel circuits, superposition principle, Wheatstone bridge, Thevenin and Norton theorems, mesh and nodal methods for solving electrical circuits. Electric field: electrostatic induction, Gauss's theorem, electric field in conductors, electric field in dielectrics, construction of a capacitor, capacitance of a capacitor, connections of capacitors, energy of the electric field in a capacitor. Magnetic field: magnetic induction, magnetic flux, magnetic field strength, flow law, Biot-Savart law, magnetic properties of materials, magnetization curve, inductance of a coil, mutual inductance, electromagnetic induction phenomenon, eddy currents. Single-phase AC circuits: AC voltage sources, average value, effective value of
	 currents and voltages, analysis of circuits containing RLC elements, phasor diagrams, instantaneous power, active, reactive and apparent power. Symbolic method for solving electrical circuits: symbolic form of voltage and current signals, complex reactance and impedance, active, reactive and apparent power. Resonant circuits: series and parallel resonance. Magnetically coupled circuits: transformers, ideal and non-ideal transformer. Three-phase currents: asymmetric loads, power of three-phase current. Rotating magnetic field, construction, and operation of induction motors. asynchronous and synchronous. Direct current (DC) motors (separately excited, shunt, series, and permanent magnet): construction and operating principles, basic relationships, starting and bracking of Demotors.
	 Electronically commutated motors: stepper, brushless permanent magnet motors. Production, processing and storage of electrical energy.
class	 Basic electrical quantities: electric charge, electric current, Coulomb's law, electric field, electric potential and voltage. Ohm's law, resistance and conductance, resistivity and conductivity of conductors, dependence of resistance on the geometric dimensions of the conductor, dependence of resistance on temperature, work and power of electric current. Calculating equivalent resistance. Calculating voltages, currents, potentials, power in branched circuits with one active element. Real voltage and current sources, resistive voltage divider, Wheatstone bridge, star and delta connections, application of Kirchhoff's laws to calculate currents and voltages in circuits with multiple sources. Application of the symbolic method to calculate currents and voltages in sinusoidal AC circuits, series and parallel connections of inductance and capacitance, calculating equivalent impedance for a circuit composed of R, L, and C elements. Power in AC circuits, current and voltage resonance, power factor improvement using compensating capacitors.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)								
code	Oral examination	Written examination	Test	Project	Report	Other			
W01			Х						
W02			Х						
W03			Х						
W04			Х						
W05			Х						

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

W06		Х		
U01		Х		
U02		Х		
U03		Х		
U04		Х		
U05		Х		
K01				Х
K02				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria					
lecture	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.					
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.					

OVERALL STUDENT WORKLOAD

ECTS weighting												
		Student workload									Unit	
No.	Activity type		full-time					pa	rt-tir	ne		
		1		yran Lb	P	S				S		
1.	Scheduled contact hours	30	15	20	•		-		20	•	0	h
2.	Other contact hours (office hours, examination)	2	2									h
3.	Total number of contact hours		49					h				
4.	Number of ECTS credits for contact hours		2,0									ECTS
5.	Number of independent study hours		26								h	
6.	Number of ECTS credits for independent study hours		1,0							ECTS		
7.	Number of practical hours		25								h	
8.	Number of ECTS credits for practical hours	1,0					ECTS					
9.	Total study time	75					h					
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time					;	3					ECTS

READING LIST

- 1. S. Bolkowski: Elektrotechnika teoretyczna. Teoria obwodów elektry
- elektrycznych, WNT 1986.
- 2. R. Kurdziel: Podstawy elektrotechniki. WNT 1973.
- 3. S. Bolkowski, W. Brociek, H. Rawa, Teoria obwodów elektrycznych zadania, WNT, 2003.
- 4. P. Hempowicz i inni, Elektrotechnika i elektronika dla nieelektryków, WNT, 2004.

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska

Dofinansowane przez Unię Europejską

- 5. W. Żakowski: Podręczniki akademickie elektronika. Matematyka. cz.II i cz.IV WNT 1972.
- 6. T. R. Kuphaldt, Lessons In Electric Circuits, http://www.ibiblio.org/kuphaldt/electricCircuits/
- 7. A. Cichocki, K. Mikołajuk, S. Osowski: Zbiór zadań z teorii obwodów, WNT 1978.
- 8. K. Mikołajuk, Trzaska Z.: Zbiór zadań z Elektrotechniki teoretycznej, WNT 1973.
- E. Gierczak, J. Suchański: Zbiór zadań z elektrotechniki teoretycznej, cz. 1, Wyd. Politechniki Świętokrzyskiej, Kielce 1996.
- 10. Don Johnson, Fundamentals of Electrical Engineering, Open Textbook Library, https://open.umn.edu/opentextbooks/textbooks/337
- 11. James M. Fiore, DC Electrical Circuit Analysis, Open Textbook Library, https://open.umn.edu/opentextbooks/textbooks/dc-electrical-circuit-analysis-a-practicalapproach-fiore
- 12. James M. Fiore, AC Electrical Circuit Analysis: A Practical Approach, Open Textbook Library, https://open.umn.edu/opentextbooks/textbooks/ac-electrical-circuit-analysis-a-practicalapproach-fiore
- 13. Chad Davis, DC Circuits, Open Textbook Library, https://open.umn.edu/opentextbooks/textbooks/dc-circuits
- 14. Chad Davis, AC Circuits, Open Textbook Library, https://open.umn.edu/opentextbooks/textbooks/ac-circuits
- 15. Louis Scharf, Richard Behrens, A First Course in Electrical and Computer Engineering, https://open.umn.edu/opentextbooks/textbooks/a-first-course-in-electrical-and-computerengineering

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23