

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-102			
	part-time programme:				
Course title in Polish	Analiza matematyczna				
Course title in English	Calculus				
Valid from (academic year)	2024/2025				

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mathematics and Physics
Course leader	Dr inż. Paweł Łabędzki
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Facul- ty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		basic
Course status		compulsory
Language of instruction		English
Semester of delive-	full-time programme	Semester I
ry	part-time programme	
Pre-requisites		
Examination required (YES/NO)		YES
ECTS value		5

Mode of instruction		lecture	class	laboratory	project	seminar
No. of hours	full-time pro- gramme	30	30			
per semester	part-time pro- gramme					

LEARNING OUTCOMES

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Category of Outcome code		Course learning outcomes	Corresponding programme out- come code
	W01	A student knows fundamental concepts in Calculus (for the case of single variable and multivariable functions) and notation connected with it.	MiBM1_W01
Knowledge	W02	A student knows the theorems connecting derivative of the function and its monotonicity and convexity. Student knows fundamental theorem of calculus and its application to calculate definite integrals.	MiBM1_W01
	W03	A student knows application of calculus in mechan- ics.	MiBM1_W01
	U01	A student can perform typical exercises in Calculus (e.g., finding limits, differentiation, function analysis, integration, approximation, optimization)	MiBM1_U01
Skills	U02	A student can interpret the results of calculations and is proficient in applying mathematical tools to solve problems of mechanics.	MiBM1_U01
	U03	A student can use mathematical notation correctly.	MiBM1_U01
Compotonco	K01 A student understands the necessity of continuous learning.		MiBM1_K01 MiBM1_K02
Competence	K02	A student understands the relationship between effort and its result.	MiBM1_K01

COURSE CONTENT

Type of in- struction lecture	Topics covered
lecture	Definition of the function. Review of elementary functions. The limit and continuity of a function. Definition of the derivative of a function and its geometrical and physical interpretations. Differentiation rules. Higher order derivatives. Application of derivatives to analyze behaviour of a function. Differential of a function. Taylor's theorem and its application in approximate calculations. Applications of calculus in mechanics. Definite integral and its properties. Indefinite integral. Integration techniques: by parts and by substitution. Selected application of definite integral in geometry and mechanics. Multivariable functions. Partial derivatives. Gradient and its interpretation. Directional derivative. Total derivative. Higher order partial derivatives. Taylor's theorem for multivariable functions. Local extrema of multivariable functions.
class	Finding domain of a function. Making graphs of elementary functions and describing its properties based on its graphs. Calculation of function limits. Continuity of a function. Calculating derivatives (including derivative of a composite function). Determining extrema and the intervals of monotonicity of the function. Approximate calculations based on function differential and Taylor's theorem. Approximation of a function by polynomial. Definite integral. Integration by parts and by substitution. Selected application of calculus in mechanics. Calculating partial derivatives. Directional derivative. Higher order partial derivatives. Application of the total differential and Taylor's theorem for multivariable function in approximate calculations. Determining the extrema of two variable functions.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)								
	Oral examina- tion	Written exa- mination	Test	Project	Report	Other			
W01		Х	Х						
W02		Х	Х						
W03		Х	Х						

U01	Х	Х		
U02	Х	Х		
U03	Х	Х		
K01				Х
K02				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	examination as- sessment	The pass mark in a minimum of 50% from the final test.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.

OVERALL STUDENT WORKLOAD

	ECTS weighting											
	Activity type		Student workload									Unit
No.			ll-tim	e pro	ogra	m-	part-time program-					
	Scheduled contact hours	L	С	Lb	Р	S	L	С	Lb	Р	S	
1.		30	30									h
2.	Other contact hours (office hours, examination)	4	4 2								h	
3.	Total number of contact hours			66								h
4.	Number of ECTS credits for contact hours	2,6							ECTS			
5.	Number of independent study hours		59							h		
6.	Number of ECTS credits for inde- pendent study hours		2,4							ECTS		
7.	Number of practical hours		63								h	
8.	Number of ECTS credits for practi- cal hours	2,5								ECTS		
9.	Total study time		125							h		
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time					į	5					ECTS

READING LIST

- 1. Decewicz G., Żakowski W., Matematyka. Cz. 1, WNT, Warszawa 1997.
- 2. Hożejowska S., Hożejowski L., Maciąg A., Matematyka w zadaniach dla studiów ekonomicznotechnicznych, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2005.
- 3. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach. Cz. 1 i cz. 2, PWN, Warszawa 2002.
- 4. Stewart J., Calculus : early transcendentals, Brooks/Cole Publishing Company, Pacific Grove 1991.
- 5. Żakowski W., Kołodziej W., Matematyka. Cz. II, WNT, Warszawa 1997.