

Dofinansowane przez Unię Europejską

COURSE SPECIFICATION

Course code	full-time programme:	M#2-S1-ME-101
	part-time programme:	
Course title in Polish	Algebra liniowa	
Course title in English	Linear algebra	
Valid from (academic year)	2024/2025	

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time programme
Specialism	all
Department responsible	Department of Mechanics and Heat Transfer
Course leader	dr hab. Sylwia Hożejowska, prof. PŚk
Approved by	dr hab. Jakub Takosoglu, prof. PŚk, Dean of the Faculty of Mechatronics and Mechanical Engineering

COURSE OVERVIEW

Course type		basic			
Course status		compulsory			
Language of instruction		English			
Semester of	full-time programme	Semester I			
delivery	part-time programme				
Pre-requisites		none			
Examination required (YES/NO)		YES			
ECTS value		4			

Mode of instruction		lecture	class	laborator y	project	seminar
No. of hours	full-time programme	15	30			
per semester	part-time programme					

LEARNING OUTCOMES

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	The student has structured knowledge of complex numbers. He can provide solutions to polynomial equations in the complex domain.	MiBM1_W01

	W02	The student has advanced knowledge of matrix algebra and methods of solving systems of linear equations.	MiBM1_W01
	W03	The student has knowledge of analytical geometry.	MiBM1_W01
	U01	The student is able to solve a polynomial equation in the complex domain.	MiBM1_U01
Skills	U02	The student is able to apply matrix calculus to solve matrix equations and to solve systems of linear equations. Is able to solve systems of linear equations.	MiBM1_U01
	U03	The student is able to solve problems met in engineering practice and concerning linear algebra and analytic geometry.	MiBM1_U01
	K01	The student is ready to critically evaluate his/her knowledge and to use expert opinions or reliable sources of information in case of difficulties in solving engineering problems.	MiBM1_K01
Competence	K02	The student critically evaluates his/her knowledge and recognizes the need to independently supplement and expand it, particularly in applying mathematical methods for solving engineering problems in mechanics and machine construction	MiBM1_K03

COURSE CONTENT

Type of instruction lecture	Topics covered
lecture	Algebraic, trigonometric, and exponential forms of a complex number. Geometric interpretation of complex numbers – the complex plane. Operations on complex numbers in algebraic, trigonometric, and exponential forms. Solving polynomial equations in the complex domain. Matrices: operations on matrices and properties of these operations. Determinant of a matrix: definition and basic properties. Inverse matrix. Solving matrix equations. Systems of linear equations. Cramer's Rule. Matrix method for solving Cramer's systems. Kronecker-Capelli theorem. Solving systems of equations using elementary row operations (Gauss and Gauss-Jordan elimination). Vectors in three-dimensional space. Algebraic operations on vectors. Scalar, cross and mixed product :properties and applications. Equation of a line in 3D and equation of a plane. Mutual position of points, lines and planes in three-dimensional space. Quadrics - canonical equations and graphs of basic quadric surfaces.
class	Algebraic, trigonometric, and exponential forms of a complex number. Geometric interpretation of complex numbers – the complex plane. Operations on complex numbers in algebraic, trigonometric, and exponential forms. Solving polynomial equations in the complex domain. Matrices: operations on matrices and properties of these operations. Determinant of a matrix: definition and basic properties. Inverse matrix. Solving matrix equations. Systems of linear equations. Cramer's Rule. Matrix method for solving Cramer's systems. Kronecker-Capelli theorem. Solving systems of equations using elementary row operations (Gauss and Gauss-Jordan elimination). Vectors in three-dimensional space. Algebraic operations on vectors. Scalar, cross and mixed product :properties and applications. Equation of a line in 3D and equation of a plane. Mutual position of points, lines and planes in three-dimensional space.

ASSESSMENT METHODS

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23

Fundusze Europejskie dla Rozwoju Społecznego

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

Outcome	Methods of assessment (Mark with an X where applicable)									
code	Oral examination	Written examination	Test	Project	Report	Other				
W01		х	х			х				
W02		x	х			х				
W03		х	х			х				
U01		х	х			х				
U02		x	Х			х				
U03		х	х			х				
K01						x				
K02						x				

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria					
lecture	examination	Final exam score 50% or higher					
	non-examination						
class	assessment	Overall test score 50% or higher					

OVERALL STUDENT WORKLOAD

ECTS weighting												
			Student workload									Unit
No.	Activity type	full-time						part-time				
			pro	gram	nme			pro	gram	nme		
1	Scheduled contact hours	L	С	Lb	Ρ	S	L	С	Lb	Ρ	S	h
••		15	30									
2.	Other contact hours (office hours, examination)	4	4 2								h	
3.	Total number of contact hours	51									h	
4.	Number of ECTS credits for contact hours	2,0							ECTS			
5.	Number of independent study hours	49							h			
6.	Number of ECTS credits for independent study hours	2,0								ECTS		
7.	Number of practical hours	67								h		
8.	Number of ECTS credits for practical hours	2,7								ECTS		
9.	Total study time	100							h			
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time		4					ECTS				

READING LIST

Rzeczpospolita Polska Dofinansowane przez Unię Europejską

1. Gdowski B., Pluciński E.: Zadania z rachunku wektorowego i geometrii analitycznej, PWN, Warszawa 2006.

2. Hożejowska S., Hożejowski L., Maciąg A.: Matematyka w zadaniach dla studiów ekonomicznotechnicznych, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2005.

3. Jurlewicz T., Skoczylas Z.: Algebra liniowa 1. Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2004.

4. Trajdos T.: Matematyka. Cz. 3, WNT, Warszawa 1987.

5. Skrypt z Algebry zamieszczony na stronie: https://wzimk-modle.tu.kielce.pl.

6. Lipschutz S., Lipson M.L., Linear Algebra, Schaum's Outline Series, Sixth Edition, Mc Graw Hill Education

Projekt "Dostosowanie kształcenia w Politechnice Świętokrzyskiej do potrzeb współczesnej gospodarki" nr FERS.01.05-IP.08-0234/23