

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-KWW-610
Course title in Polish	Wspomaganie komputerowe projektowania proce- sów obróbki plastycznej
Course title in English	Computer Aided Design for Metal Forming
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	Computer-Aided Manufacturing
Department responsible	Department of Metal Science and Manufacturing Pro- cesses
Course leader	Tomasz Miłek, Ph. D.
Approved by	

COURSE OVERVIEW

Course type	programme-specific
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 6
Pre-requisites	Fundamentals of Metal Forming, Metal Forming, Fundamentals of Metal Form- ing Design
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15			15	

LEARNING OUTCOMES

Category Out- come Course learning outcomes code			Corresponding programme outcome code
	W01	On completion of the course, students will have funda- mental knowledge of the possibilities of FEM-based computer programs designed to simulate forging pro- cesses.	MiBM1_W12
Knowledge	W02 On completion of the course, student will have theoreti- cal knowledge of computer-aided design and manufac- turing for metal forming processes especially hot die forging of circularly symmetric forgings.		MiBM1_W19
	U01	At the end of this course, students will have the skills required to performing computer modeling of die forging processes for circularly symmetric forgings in QForm software.	MiBM1_U02 MiBM1_U12
Skills	U02	By the end of this course, students will be able to select the right boundary conditions for modeling of hot die forging process.	MiBM1_U07 MiBM1_U08
	U03	On completion of the course, students will be able to carry out computer simulations of die forging processes for circularly symmetric products in QForm software and draw appropriate conclusions from the simulation results.	MiBM1_U05
Competence	K01	By the end of this course, students will be aware of the responsibility for their professional engagement and are ready to comply with the principles of team work, taking the responsibility for tasks performed as a team.	MiBM1_K04

COURSE CONTENT

Type of instruction*	Topics covered					
lecture	 Introduction: the aim of the theoretical analysis of metal forming processes, directions of development of modern metal forming processes, review of softwares used in metal forming based on FEM method. The application of the QFORM-2D software to solve technological problems in different metal forming methods, especially: open-die forging, die forging, forward and backward extrusion and wire drawing. Characteristics of QFORM-2D software. Theoretical foundations and assumptions of QFORM-2D. Technical data and software parameters. Overview of available commands in QFORM-2D. Source data required for simulation by QForm: geometry datas (billet and dies drawings in AutoCAD or SolidWorks) and technological parameters (material properties, equipment, lubricant, other process parameters). Discussion of errors in preparing datas for simulations. - 6. Analysis of results in the QFORM-2D software (analysis of distributions of effective strain, flow stress, temperature in cross section of forgings and changes of force in 					
	function of displacements of tools). Interpretation of modeling results from the point of view of a technological engineer.7. Application of the finite element method (FEM) to modeling metal forming processes.					
	8. Test					
project	The project consists in carrying out a computer simulation of the hot die forging pro- cess of a circular-symmetric forgings on a crank press or on a steam-air hammer in the QForm software and the analysis of the obtained numerical results. Students have to prepare and deliver a presentation (Powerpoint software) to discuss the results of an engineering project.					
	12. Preparation of geometric data for the simulation based on AutoCAD or Solid- Works software (drawings of tools, shape and dimensions of the workpiece).					

3. Defining drawing objects in the Q-Draft software. Determining and entering into the QFORM software the technological parameters of the die forging process on the press or on the hammer, a such as following: type of simulated process, time of cooling in air, grade of steel, heating temperature of the workpiece, tool parameters, lubricant, forging equipment, final distance between tools.
45. Performing a numerical calculations by using QForm software. Analysis of the obtained simulation results for die forging in terms of material flow, the degree of material filling of the dies, distributions of workpiece temperature, flow stress, effective strain in the longitudinal section of the forgings and changes of the force vs. displacement of tools.
6. Input data correction owing from the analysis of the obtained numerical results. Addi- tional simulations of die forging for corrected boundary conditions.
78. Development of the project with interpretation of modeling results in the form of a multimedia presentation. Discussion of the results obtained in engineering project.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)						
code	Oral examination	Written examination	Test	Project	Report	Other	
W01			Х				
W02			Х				
U01				X			
U02				Х			
U03				X			
K01						Х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria					
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final in-class test.					
project	non-examination assessment	Regular class attendance. The pass mark is a minimum of 50% for the project.					

OVERALL STUDENT WORKLOAD

	ECTS weighting							
	Activity type	Student workload Unit						
1.	Scheduled contact hours	L	С	Lab	Р	S	L .	
1.	Scheduled contact hours	15			15		h	
2.	Other contact hours (office hours, examination)	2	2 2			h		
3.	Total number of contact hours	34		h				
4.	Number of ECTS credits for contact hours	1,4			ECTS			
5.	Number of independent study hours	16			h			
6.	Number of ECTS credits for independent study hours	0,6			ECTS			
7.	Number of practical hours			25			h	

8.	Number of ECTS credits for practical hours	1	ECTS
9.	Total study time	50	h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2	ECTS

READING LIST

- 1. QFORM 2D/3D. Metal forming simulation program. 2D simulation User's Guide. QuantorForm Ltd. 2008
- 2. Pacanowski J., Chałupczak J.: Design of die forging processes of circular-symmetric elements on presses and hammers. Kielce University of Technology. Kielce, 2011(in Polish)
- 3. Pietrzyk M.: Numerical methods in metal forming of metals. Wydawnictwa AGH. Kraków 1992 (in Polish)
- 4. Dyja H.S., Banaszek G.A., Grynkevych V.A., Danchenko V.N.: Modeling of open die forging processes. Wydawnictwo Politechniki Częstochowskiej. Częstochowa 2004 (in Polish)
- 5. Lange K: Handbook of metal forming, MCGraw-Hill Book Company
- 6. Muster A.: Die forging. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2002 (in Polish)
- 7. https://www.qform3d.com/processes