

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-KWW-508
Course title in Polish	Obróbka plastyczna
Course title in English	Metal Forming
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	Computer-Aided Manufacturing
Department responsible	Department of Metal Science and Manufacturing Pro- cesses
Course leader	Tomasz Miłek, Ph. D.
Approved by	

COURSE OVERVIEW

Course type	programme-specific
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 5
Pre-requisites	Fundamentals of Metal Forming
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15		15		

LEARNING OUTCOMES

Category of outcome code		Course learning outcomes	Corresponding programme outcome code	
Kroulodeo	W01	Having successfully completed this course, students will have knowledge of metal forming processes, they will know and understand manufacturing processes used to manufacture mechanical elements with special tooling and equipments.	MiBM_W10	
Knowledge	W02	By the end of this course, student will have knowledge and will understand the influence of different factors on the suitability of metal sheets for forming processes of elements used in the construction of machines and de- vices.	MiBM_W11	
Skills	U01	On completion of this programme students will be able to obtain information from the literature, databases and other sources in various languages; they will be able to combine, analyse and interpret the information, draw conclusions and formulate and justify opinions	MiBM1_U03	
	U02	On completion of the course, student will be able to de- velop technical documentation required for an engineer- ing task and write a report discussing the results	MiBM1_U04	
Competence K01 By the end of this course, students will be aware of the responsibility for their professional engagement and are ready to comply with the principles of team work, taking the responsibility for tasks performed as a team.		MiBM1_K04		

COURSE CONTENT

Type of instruction*	Topics covered
	1. Introduction to determination of formability of sheet-metal: discussion of the most important of material properties that may affect the drawability of the sheet, the flow stress characteristics as a function of the strain rate, influence of mechanical properties on formability.
	2. Discussion of mechanical anisotropy: normal and planar anisotropy (definitions, schematic representations, Lankford factor, Keller coeffiction, an average value of normal anisotropy for sheets, calculations of limit coeffiction of deep drawing processes), influence of anisotropy on drawability of material.
lecture	3 4. Sheet metal formability tests, discussion of selected methods for determine the suitability of sheet metals for forming processes: strech-forming test (Erichsen cupping test) and deep drawing test (Engelhardt method); definitions, schemes, characteristic parameters from tests, comparision of formability of sheet-metal for different materials.
	5. – 6. Discussion of selected methods of shaping of drawpieces on presses: ironing, flanging, sizing, necking and bulge forming processes (definitions, schemes, calculation of deformations degrees, technological parameters, applications, advantages and disadvantages).
	 7. Discussion of methods of drawpieces forming with high wall-thickness reduction and with thick bottom (schemes, definitions and applications)Forming methods of drawpieces 8. Test
	1. Introduction to laboratory class
	2. Redrawing of drawpieces without collar
laboratory	3. Can backward extrusion
	4. Solid forward extrusion
	5. Flanging (collar drawing)

6. Hydroforming
7. Test

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)							
code	Oral examination	Written examination	Test	Project	Report	Other		
W01			Х					
W02			Х					
U01					Х			
U02					Х			
K01						Х		

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final in-class test.
laboratory	non-examination assessment	Regular class attendance. A minimum of 50% for the final in- class test. A pass mark for each post-lab report.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type	Student workload					Unit
1.	1. Scheduled contact hours		С	Lab	Р	S	h
1.		15		15			11
2.	Other contact hours (office hours, examination)	2		2			h
3.	Total number of contact hours			34			h
4.	Number of ECTS credits for contact hours		1,4			ECTS	
5.	Number of independent study hours	16				h	
6.	Number of ECTS credits for independent study hours	0,6			ECTS		
7.	Number of practical hours	25			h		
8.	Number of ECTS credits for practical hours	1			ECTS		
9.	Total study time	50			h		
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2				ECTS	

READING LIST

- 1. Erbel J i inni.: Encyclopedia of manufacturing techniques used in the engineering industry. T 1, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001 (in Polish).
- 2. Sińczak J. i inni: Metal forming processes. Laboratory exercises. Wydawnictwo naukowe AKA-PIT, Kraków 2001 (in Polish).

- 3. Lange K: Handbook of metal forming, MCGraw-Hill Book Company
- 4. Pacanowski J.: Design of deep drawing process of axisymmetric drawpieces and design pressforming dies T1 Methods and directives for deep drawing of axisymmetric drawpieces, Kielce: Kielce University of Technology, 2018 (in Polish)
- 5. Pacanowski J., Chałupczak J.: Design of die forging processes of circular-symmetric elements on presses and hammers Politechnik Świętokrzyska. Kielce, 2011(in Polish)
- 6. Golatowski T.: Design of deep drawing process and press-forming dies Selected problems. Warsaw: Warsaw University of Technology, 1984 (in Polish)
- 7. Marciniak Z Limit strains in deep drawing process of sheet metals, Warsaw: WNT, 1971 (in Polish)
- 8. Richert J.: Innovative methods of metal forming processes. Wydawnictwa AGH 2010 (in Polish).
- 9. Żaba K., Mamala A.: Metal forming of non-ferrous metals. Laboratory exercises. Rolling and drawing. Wydawnictwa AGH, Kraków 2011 (in Polish).
- 10. Miłek T.: Techniques of production. Kielce University of Technology, Kielce 2012 (<u>www.wmibm-moodle.tu.kielce.pl</u>)
- 11. Instructions for laboratory exercises.