

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

# **COURSE SPECIFICATION**

| Course code                | M#1-S1-ME-KWW-506  |
|----------------------------|--------------------|
| Course title in Polish     | Obróbka skrawaniem |
| Course title in English    | Machining          |
| Valid from (academic year) | 2019/2020          |

#### **GENERAL INFORMATION**

| Programme of study     | MECHANICAL ENGINEERING                                   |
|------------------------|----------------------------------------------------------|
| Level of qualification | first-cycle                                              |
| Type of education      | academic                                                 |
| Mode of study          | full-time                                                |
| Specialism             | Computer-Aided Manufacturing                             |
| Department responsible | Department of Manufacturing Engineering and<br>Metrology |
| Course leader          | Prof. Edward Miko, BEng, PhD                             |
| Approved by            |                                                          |

# **COURSE OVERVIEW**

| Course type                   | specialism-related        |
|-------------------------------|---------------------------|
| Course status                 | compulsory                |
| Language of instruction       | English                   |
| Semester of delivery          | semester 5                |
| Pre-requisites                | Fundamentals of Machining |
| Examination required (YES/NO) | YES                       |
| ECTS value                    | 5                         |

| Mode of instruction          | lecture | class | laboratory | project | seminar |
|------------------------------|---------|-------|------------|---------|---------|
| No. of hours<br>per semester | 30      |       | 30         |         |         |

## LEARNING OUTCOMES

| Category<br>of outcome | Outcom<br>e code | Course learning outcomes                                                                                                                                                                                                                                                                                                                                       | Corresponding<br>programme<br>outcome code |
|------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                        | W01              | They will have knowledge of nomenclature, construction,<br>principles of operation of various types of machines,<br>determining the basic parameters of their work. The<br>student knows and understands the physical<br>phenomena occurring in the cutting process. Has<br>knowledge of the classification of subtractive processes.                          | MiBM_W08                                   |
| Knowledge              | W02              | They will have a fundamental knowledge of the techniques of manufacturing machine parts, including machining techniques, and has a basic knowledge of the construction of machines for processing and shaping materials. The student knows the course of the machining allowance removal mechanisms. He knows how to properly choose the processing conditions | MiBM_W10                                   |
|                        | W03              | They will have knowledge related to selected issues in<br>the field of manufacturing basic elements of machines<br>and devices.                                                                                                                                                                                                                                | MiBM1_W15                                  |
|                        | U01              | They will be able to analyze and draw conclusions on<br>the influence of selected machining factors on the<br>material removal process.                                                                                                                                                                                                                        | MiBM1_U04                                  |
| Skills                 | U02              | They will be able to design a simple technological process of mechanics. The student is able to select machining parameters and tools for a specific technological task.                                                                                                                                                                                       | MiBM1_U08                                  |
| Competence             | K01              | On completion of this programme students will<br>understand the need for and know the opportunities of<br>gaining further professional qualifications (second cycle<br>programmes, third cycle programmes, postgraduate non-<br>degree courses, training courses) to enhance their<br>professional, personal and social development.                           | MiBM1_K01                                  |
|                        | K02              | They will be aware of and understand the relationships<br>between engineering and non-engineering activities,<br>including their impact on the environment and the<br>responsibility for decision-making.                                                                                                                                                      | MiBM1_K02                                  |

### **COURSE CONTENT**

| Type of<br>instruction* | Topics covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lecture                 | Classification of machining processes. The use of machining in modern production processes. Geometric and material characteristics of the cutting edge. Physical aspects of the cutting process. Mechanics of the cutting process. Forces in the cutting process. Energy and cutting power. Chip curling and breaking. Vibrations in the cutting process. Heat in the cutting process. Methods of determining the temperature in the cutting zone. The role and tasks of cooling lubricants. Blade wear and durability. Machinability of construction materials. Machining technology: turning, drilling, reaming and boring, cylindrical and face milling. Threading methods. Outline of chip methods of gear teeth processing. Basics of abrasive processing. Properties and consumption of abrasive materials and tools. Grinding, honing, oscillating superfinishing, lapping and polishing. |
|                         | 1. Health and safety training, rules for passing the course, exercise schedule.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 2. Influence of cutting technological parameters on roughness of turned surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| laboratory              | 3. Cutting temperatures during turning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| laboratory              | 4. Cutting force and torque in the drilling process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 5. Drilling, reaming and boring holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 6. Threading and forming internal threads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 7. The influence of technological parameters of cutting on the roughness of milled surfaces                              |
|--------------------------------------------------------------------------------------------------------------------------|
| <ol><li>Errors of cutting inserts in the body of a multi-edge tool and their impact on the<br/>cutting process</li></ol> |
| 9. Examination of wear and blade life                                                                                    |
| 10. Forces in the milling process                                                                                        |
| 11. Cutting temperatures in milling                                                                                      |
| 12. Vibrations in the milling process                                                                                    |
| 13. Geometric structure of the surface after grinding                                                                    |
| 14. Thermal drilling                                                                                                     |
| 15. Test                                                                                                                 |

\*) Please delete rows in the table above that are not applicable.

### ASSESSMENT METHODS

| Outcome | Methods of assessment (Mark with an X where applicable) |                     |      |         |        |       |  |
|---------|---------------------------------------------------------|---------------------|------|---------|--------|-------|--|
| code    | Oral examination                                        | Written examination | Test | Project | Report | Other |  |
| W01     |                                                         | Х                   |      |         |        |       |  |
| W02     |                                                         | Х                   |      |         |        |       |  |
| W03     |                                                         | Х                   |      |         |        |       |  |
| U01     |                                                         |                     | Х    |         | Х      |       |  |
| U02     |                                                         |                     | Х    |         | Х      |       |  |
| K01     |                                                         |                     |      |         |        | Х     |  |
| K02     |                                                         |                     |      |         |        | Х     |  |

# ASSESSMENT TYPE AND CRITERIA

| Mode of<br>instruction* | Assessment type | Assessment criteria                                       |  |  |  |  |
|-------------------------|-----------------|-----------------------------------------------------------|--|--|--|--|
| lecture                 | examination     | The pass mark is a minimum of 50 points out of a possible |  |  |  |  |
| lecture                 | assessment      | 100 for the examination.                                  |  |  |  |  |
|                         | non examination | Regular class attendance.                                 |  |  |  |  |
| laboratory              |                 | A pass mark for each post-lab report. A minimum of 50     |  |  |  |  |
|                         | assessment      | points out of a possible 100 for the final in-class test. |  |  |  |  |

\*) Please delete rows in the table above that are not applicable.

#### OVERALL STUDENT WORKLOAD

|                                  | ECTS weighting                                     |     |                  |      |      |   |      |  |
|----------------------------------|----------------------------------------------------|-----|------------------|------|------|---|------|--|
|                                  | Activity type                                      |     | Student workload |      |      |   |      |  |
|                                  |                                                    | L   | С                | Lab  | Р    | S | h    |  |
| 1.                               |                                                    | 30  |                  | 30   |      |   | - 11 |  |
| 2.                               | Other contact hours (office hours, examination)    | 4 2 |                  |      | h    |   |      |  |
| 3. Total number of contact hours |                                                    | 66  |                  |      |      |   | h    |  |
| 4.                               | Number of ECTS credits for contact hours           | 2,6 |                  |      | ECTS |   |      |  |
| 5.                               | Number of independent study hours                  | 59  |                  | h    |      |   |      |  |
| 6.                               | Number of ECTS credits for independent study hours | 2,4 |                  | ECTS |      |   |      |  |

| 7.  | Number of practical hours                                                | 63  | h    |
|-----|--------------------------------------------------------------------------|-----|------|
| 8.  | Number of ECTS credits for practical hours                               | 2,5 | ECTS |
| 9.  | Total study time                                                         | 50  | h    |
| 10. | ECTS credits for the course<br>1 ECTS credit = 25-30 hours of study time | 5   | ECTS |

# **READING LIST**

- 1. Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications by Wit Grzesik
- 2. Modern Machining Technology: A Practical Guide (Woodhead Publishing in Mechanical Engineering) by J Paulo DavimFundamentals of Metal Machining and Machine Tools by Winston A. Knight, Geoffrey Boothroyd