

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-KWW-409
Course title in Polish	Podstawy programowania CNC
Course title in English	Fundamentals of CNC Programming
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	Computer-Aided Manufacturing
Department responsible	Department of Manufacturing Engineering and Metrology
Course leader	Łukasz Nowakowski, BEng, PhD
Approved by	

COURSE OVERVIEW

Course type	specialism-related
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 4
Pre-requisites	Engineering Drawing, Fundamentals of Machining
Examination required (YES/NO)	NO
ECTS value	5

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	30		15	30	

LEARNING OUTCOMES

Category of outcome	Outcom e code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	They will have a fundamental knowledge of the techniques of manufacturing machine parts, methods of joining materials, taking into account additive and laser technologies, rapid prototyping and reverse engineering, also has a basic knowledge of the construction of various types of processing systems and shaping materials.	MiBM_W10
	W02	They will have a fundamental knowledge related to selected issues in the field of machine construction, production technology of basic elements of machines and devices, their operation, evaluation of operational properties and wear, diagnosis of the technical condition, repair technology and safe use.	MiBM1_W15
	U01	They will be able to use computer software in the field of mechanics and machine construction	MiBM1_U02
Skills	U02	They will have knowledge of designing a simple technological process in the field of mechanics and machine construction and select appropriate machines and devices for this purpose	MiBM1_U08
Competence	K01	On completion of this programme students will understand the need for and know the opportunities of gaining further professional qualifications (second cycle programmes, third cycle programmes, postgraduate non- degree courses, training courses) to enhance their professional, personal and social development.	MiBM1_K01
	K02	They will be aware of and understand the relationships between engineering and non-engineering activities, including their impact on the environment and the responsibility for decision-making.	MiBM1_K02

COURSE CONTENT

Type of instruction*	Topics covered
lecture	As part of the lectures, the following content will be provided, covering the basic issues of: construction of numerically controlled machine tools, types of kinematic systems, technological possibilities of individual groups of numerically controlled machine tools, devices used on numerically controlled machine tools, types of controllers used in numerically controlled machine tools. Students will also be acquainted with the basics of manual programming of lathes and milling machines, program structure, stock definition, tool definition, simple tool path programming and machine functions.

	As part of the laboratory classes, students will complete 6 practical exercises
laboratory	 getting acquainted with the construction and operation of numerically controlled lathes located in the laboratory (starting the machine, basic control operation, equipping the machine with tools, measuring the tool, clamping the stocks, setting the program zero point, creating a simple machining program, simulating the program, starting the machining process), implementation on a lathe of a simple technological process, which was developed during the design classes, performing quality control of the processed item, introducing corrections to the machining program, getting acquainted with the construction and operation of numerically controlled milling machines located in the laboratory (starting the machine, basic control operation, equipping the machine with tools, measuring the tool, clamping the stocks, setting the program zero point, creating a simple machining process), implementation on a milling machine of a simple technological process, which was developed during the program, starting the machining program, getting acquainted with the construction and operation of numerically controlled milling machines located in the laboratory (starting the machine, basic control operation, equipping the machine with tools, measuring the tool, clamping the stocks, setting the program zero point, creating a simple machining program, simulating the program, starting the machining process), implementation on a milling machine of a simple technological process, which was developed during design classes performing quality control of the processed item, introducing corrections to the machining program, simulating the processed item, introducing corrections to the machining program,
project	 As part of the design classes, students will be familiarized with the operation of numerically controlled machine tool control systems simulators, with the use of which they will develop two simple technological processes for a lathe and milling machine. The scope of the project includes: development of a model and technical drawing of a selected item in a CAD program, selecting the machine tool, holder and tools that will be used in the production process, selection of technological parameters of the machining process, development of programs controlling the operation of numerically controlled machine tools, selection of measurement tools necessary to verify the correctness of the designed object.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)					
code	Oral examination	Written examination	Test	Project	Report	Other
W01			Х			
W02			Х			
U01			Х	Х	Х	
U02			Х	Х	Х	
K01						Х
K02						Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction* Assessment type		Assessment criteria				
lecture	examination assessment	The pass mark is a minimum of 50 points out of a possible 100 for the final in-class test.				

laboratory	non-examination assessment	Regular class attendance. A minimum of 50 points out of a possible 100 for each post-lab report and the final in-class test.
project	non-examination assessment	Regular class attendance. The pass mark is a minimum of 50 points out of a possible 100 for the project.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type		Student workload				Unit
1	Scheduled contact hours	L	С	Lab	Р	S	h
1.		30		15	30		11
2.	Other contact hours (office hours, examination)	2		2	2		h
3.	Total number of contact hours			81			h
4.	Number of ECTS credits for contact hours		3,2			ECTS	
5.	Number of independent study hours		44			h	
6.	umber of ECTS credits for independent study 1,8		ECTS				
7.	7. Number of practical hours 75			h			
8.	Number of ECTS credits for practical hours	3,0		ECTS			
9.	Total study time			125			h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time5				ECTS		

READING LIST

- Basics of CNC Programming by Pawan Negi, Mangey Ram, Om Prakash Yadav
 CNC Programming with G Code for Beginners: Learn the basics of machining with G-Code Kindle Edition by Vokocic Nest Publications
- 3. CNC Machining Handbook: Building, Programming, and Implementation Paperback by Alan Overby
- 4. Heidenhain Programming Manuals and Operator Documentation