

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1- S1-ME-709
Course title in Polish	Maszyny Cieplno - Przepływowe
Course title in English	Fluid-Flow Machines and Heat Exchangers
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	1 st degree
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Mechanics
Course leader	Dr hab inż. Robert Pastuszko, prof. PŚk
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 7
Pre-requisites	Fluid Mechanics, Thermodynamics
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15	15			

LEARNING OUTCOMES

Category of outcome	Outcome code	Course learning outcomes	Corresponding programme outcome code
	W01	On completion of the course, students will have elemen- tary knowledge of the types of fluid-flow machines, a basic knowledge of the construction of pumps and their parameters.	MiBM1_W04 MiBM1_W21
Knowledge	W02	Students will have elementary knowledge of pump characteristics, liquid flow in a centrifugal pump, con- nection of pumps and their cooperation with a pipe sys- tem.	MiBM1_W04 MiBM1_W21
	W03	Students will have knowledge of the types, characteris- tics and selection of fans for the ventilation system.	MiBM1_W04 MiBM1_W21
	W04	Students will have elementary knowledge of heat ex- changers, renewable sources of energy, solar collec- tors, heat pumps.	MiBM1_W04 MiBM1_W21
	U01	On completion of the course, students will be able to determine the basic parameters of the pump, use the pump characteristics. Students will have the skills to determine the operating point.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
Skills	U02	Students will have the skills to use the fan characteris- tics, determine the fan/system operating point.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U03	Students will be able to determine the heat transfer surface of a simple counter-flow or cross-flow exchang- er.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
Competence	Competence K01 On completion of the course, students will be aware the environmental impact of reducing energy consu- tion to drive pumps and fans, and the use of unconv tional energy sources.		MiBM1_K01 MiBM1_K02 MiBM1_K03
	K02	Students will understand the need for working in a group while performing calculations, follows the rules of teamwork.	MiBM1_K01 MiBM1_K02 MiBM1_K03 MiBM1_K04

COURSE CONTENT

Type of instruction*	Topics covered
	General information, classification of fluid flow machines. Reciprocating pumps and velocity pumps.
	Main categories of dynamic pumps. Pump capacity, useful pump head, power and efficiency. Pump performance curves and system curve. Operation point. Pump specific speed. Elementary analysis of the velocity vectors on the impeller blade. Liquid flow in a centrifugal pump - Euler turbomachine equation.
lecture	Cooperation of pumps with the pipeline system - operating point. Pumps in series and parallel.
	Fans and blowers - division, characteristics, cooperation with the ventilation system. Operating point of a fan and system.
	Heat exchangers: recuperators and regenerators - types, construction, logarithmic temperature difference, overall heat transfer coefficients.
	Methods of using unconventional energy sources. Solar panels. Heat pumps.

Sample calculations of the basic operating parameters and construction dimensions
of a centrifugal pump, determining the power of the motor driving the pump
Cooperation of the pump with the system, pump and the pumping system character-
istics, determination of the operating point. Preliminary design of a centrifugal pump.
Calculations of basic parameters of fans and blowers. Determination of the pressure
drop in the ventilation system.
Determination of air flow rate and required outlet pressure and shaft power of the fan.
Calculation of the overall heat transfer coefficients and heat transfer area for the heat
exchanger.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)					
code	Oral examination	Written examination	Test	Project	Report	Other
W01			Х			
W02			Х			
W03			Х			
W04			Х			
U01			Х			
U02			Х			
U03			Х			
K01						Х
K02						Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination assessment	The assessment in the form of an open-ended question test. The overall mark for the course is dependent on the number of points obtained for the coursework assignments. The pass mark is a minimum of 51 points. The highest mark 'very good' is awarded for 90-100 points.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type	Student workload Un					Unit
1	4 Oshadulad assistant basis		С	Lab	Р	S	h
1.	1. Scheduled contact hours	15	15				
2.	Other contact hours (office hours, examination)		2				h
3.	3. Total number of contact hours 34			h			
4.	Number of ECTS credits for contact hours	1,4		ECTS			
5.	Number of independent study hours	16			h		

6.	Number of ECTS credits for independent study hours	0,6	ECTS
7.	Number of practical hours	25	h
8.	Number of ECTS credits for practical hours	1,0	ECTS
9.	Total study time	50	h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2	ECTS

READING LIST

- 1. Y. A. Cengel, J. M. Cimbala, Fluid Mechanics. Fundamentals and Applications, McGraw-Hill Inc. 2014.
- 2. C. E. Brennen, Hydrodynamics of Pumps, Concepts ETI, Inc. and Oxford University Press, 1994
- 3. Basic Principles for the Design of Centrifugal Pump Installations, Sterling Fluid Systems Group, 2003
- 4. B. Nesbit, Handbook of Pumps and Pumping: Pumping Manual International, Elsevier Science & Technology Books, 2006
- 5. F. Bleier, Fan Handbook: Selection, Application, and Design, McGraw-Hill Education, 1998
- 6. Bayazitoglu, Y. Ozisik, Necati M.: Elements of Heat Transfer, McGraw-Hill Book Company, New York, 1988