

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-505
Course title in Polish	Komputerowe wspomaganie projektowania
Course title in English	Computer Aided Design
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Machine Design
Course leader	Urszula Janus-Gałkiewicz, BEng, PhD
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 5
Pre-requisites	Computer-Aided Engineering drawing, Machine Design
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester			30		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code	
	W01	They will have a knowledge of IT tools, engineering graphics software, office suites, calculation software, and modelling software to solve engineering problems in machine design.	MiBM1_W05	
Knowledge	W02 They will know how to develop and analyse technical documentation, which involves engineering design using graphics and calculation software.		MiBM1_W12	
	W03	They will have knowledge of engineering calculation methods used in mechanics, mechanical design and strength of materials, especially the strength of bars and bar systems, material tension, strength of beams, slabs, shells and thick-walled cylinders subjected to combined loading.	MiBM1_W19	
Skillo	U01	They will be able to select appropriate engineering mate- rials to ensure correct machine operation.	MiBM1_U14	
Skills	U02	They are able to design machine elements using CAD/CAM software.	MiBM1_U19	
Competence K01 tech		They will be aware of the social role of a graduate of a technology-oriented university and understand the need to inform in a comprehensive way the general public about accomplishments in mechanical engineering.	MiBM1_K06	

COURSE CONTENT

Type of instruction*	Topics covered					
	1. Creation of an assembly in SolidWorks. Basic Mate Operations					
	2. Creation of an assembly in SolidWorks. Advanced/Mechanical mates.					
	3. Threaded joint					
	4. DimExpert					
	5-6. Modelling non-standard elements of machine.					
loborotory/	7. Selection of standardized machine parts (Toolbox).					
laboratory	8-9. Application of standard and advanced mates.					
	10. Motion analysis.					
	11. Creation exploded views.					
	12. Assembly drawing with bills of materials					
	13-14. Creation of full documentation for assembly drawing					
	15. Test					

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)						
code	Oral examination	Written examination	Test	Project	Report	Other	
W01			х	х			
W02			х	х			
W03			х	х			
U01			х	х			
U02			х	х			
K01						х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
laboratory	non-examination assessment	Regular class attendance. A pass mark for each in-class assignment. The pass mark is a minimum of 50% for the in- class test.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

ECTS weighting							
	Activity type	Student workload				Unit	
1.			L C		Lab P		h
1.	Scheduled contact hours			30			
2.	Other contact hours (office hours, examination)			2			h
3.	Total number of contact hours			32			h
4.	Number of ECTS credits for contact hours	1.3			ECTS		
5.	Number of independent study hours	18			h		
6.	6. Number of ECTS credits for independent study hours		0.7				ECTS
7.	7. Number of practical hours		50				
8.	Number of ECTS credits for practical hours	of ECTS credits for practical hours 2.0			ECTS		
9.	Total study time 50			h			
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2				ECTS	

READING LIST

- 1. James D. Bethune, Engineering Design and Graphics with SolidWorks® 2016, Pearson Education, Inc., 2017
- 2. F. E. Giesecke, S. Lockhart, M. Goodman, C.M. Johnson, Technical drawing with engineering graphics, Pearson Education, Inc., 2016.
- 3. G. Jankowski, R. Doyle, SolidWorks® For Dummies, Wiley, 2011
- 4. M. Lombard , SolidWorks Assemblies and Assembly Drawings Bible, Wiley John & Sons, Inc., 2011