

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-408
Course title in Polish	Mechanika Płynów
Course title in English	Fluid Mechanics
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Mechanics
Course leader	dr hab. inż. Robert Pastuszko
Approved by	

COURSE OVERVIEW

Course type	basic	
Course status	compulsory	
Language of instruction	English	
Semester of delivery	semester 4	
Pre-requisites	Mathematics	
Examination required (YES/NO)	NO	
ECTS value	3	

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15	15	15		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code
	W01	On completion of the course, students will have knowledge on basic properties of fluids; a student will be able to know the differences between ideal and real flu- ids.	MiBM1_W04 MiBM1_W21
Knowledge	W02	A student will have skills on fluid statics including basic equations of statics; a student will know the instruments for measuring pressure and their applications; a student will be familiar with the differences between absolute pressure, negative pressure and overpressure, Pascal's law; a student will have and elementary knowledge on determining hydrostatic forces on submerged surfac- es; a student will have the skills to understand fluids in rigid-body motion.	MiBM1_W04 MiBM1_W21
	W03	A student will be able to use basic notions of fluid kine- matics; a student will have a fundamental knowledge of about equations of continuity.	MiBM1_W04 MiBM1_W21
	W04	A student will be familiar with mass and volume flow rate; a student will have knowledge on: Euler and Ber- noulli equations, Reynolds number and other similarity numbers used in fluid mechanics; a student will have basic knowledge on energy losses and the methods of their determining; a student will have an elementary knowledge flows around solid bodies by viscous fluids, and drag and lift forces.	MiBM1_W04 MiBM1_W21
	U01	A student will have the skills to determine main proper- ties of fluids with temperature and pressure changes.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U02	A student will be able to utilize Pascal's law to calculate force increase in a hydraulic system; a student will have the skills of calculating hydrostatic pressure in closed containers; a student will be able to solve basic prob- lems concerning fluids in rigid-body motion.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
Skills	U03	A student will be able to to determine mass and capacity flow rates; a student will have the skills to apply the con- tinuity equation; a student will be able to determine the Reynolds number.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U04	A student will have the skills to utilize Bernoulli equation for internal flow of an ideal fluid.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
	U05	A student will have the skills to utilize the Bernoulli equa- tion for internal flow of a real fluid.	MiBM1_U01 MiBM1_U03 MiBM1_U04 MiBM1_U20 MiBM1_U21
Competence	K01	A student will be aware of the impact of fluid storage and transport method on the natural environment.	MiBM1_K01 MiBM1_K02 MiBM1_K03

K02	A student will be able to work in a team during meas- urements and to analyze the results; a student will be aware of the importance of knowledge concerning the principles of teamwork.	MiBM1_K01 MiBM1_K02 MiBM1_K03 MiBM1_K04
-----	---	--

COURSE CONTENT

Type of instruction*	Topics covered
	1. Introduction to fluid mechanics. Real and ideal fluids. The properties of fluids. Forces acting on fluids.
	2. Fluid statics. Basic equation of fluid statics. The equation of fluid equilibrium in a three-dimensional system. Pressure and pressure measurement. Pascal's law.
	3. Pressure measurement devices. Hydrostatic forces on submerged plane and curved surfaces. Stevin's paradox. Fluids in rigid-body motion.
	4. Buoyancy, floating and stability. Archimedes' principle. Elements of compressible fluids statics.
lecture	 Basic concepts of fluid kinematics. Continuity equation. The description of fluid motions. The dynamics of fluids – Euler's equation of motion. Bernoulli's equation. The applications of Bernoulli's equation.
	6. Dynamic equations of viscous fluid (Navier-Stokes). Internal flow. The Hagen- Poiseuille law. Laminar and turbulent flows. Major and minor losses.
	7. Bernoulli equation including energy losses. Types of fluid flow problems. Energy and hydraulic grade lines.
	8. The concept of a boundary layer. Flow over cylinders and spheres. Drag and lift forces.
	1. Physical properties of fluids: mass, density.
	2. Physical properties of fluids: compressibility, expansion, viscosity.
	3. Hydrostatic pressure. Pressure-depth relationship, Pascal's law.
class	4. Hydrostatic balance. Connected vessels.
	5. Mass and volumetric mass flow rate. Continuity equation.
	6. Bernoulli's equation for a perfect fluid.
	7. Bernoulli's equation for real fluid. Major and minor losses. Reynolds number.
	1. Passing requirements. Familiarizing students with health and safety and fire pro- tection regulations in the Laboratory of Fluid Mechanics. Principles of developing experimental data.
	2. Measurement of shear stresses and viscosity.
	3. Relative equilibrium of liquids.
laboratory	4. Flow visualization - critical Reynolds number.
	5. Losses by pipe friction: determination of Darcy friction factor during the flow of
	water in the close loop.
	6. Head losses: determination of the head loss factor for the sudden change of area.
	7. Determining of the characteristics of a selected flow machine (a pump).

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)					
code	Oral examination	Written examination	Test	Project	Report	Other
W01			Х			
W02			Х			
W03			Х			
W04			Х			
U01			Х		Х	
U02			Х		Х	
U03			Х		Х	

U04		Х	Х	
U05		Х	Х	
K01				Х
K02		Х		

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final in-class test.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests
laboratory	non-examination assessment	The pass mark is a minimum of 50% for each pre-lab test and each post-lab report.
project	non-examination assessment	
seminar	non-examination assessment	

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting								
	Activity type	Student workload					Unit		
1	1. Scheduled contact hours		С	Lab	Р	S	h		
1.			15	15					
2.	Other contact hours (office hours, examination)	2	2	2			h		
3.	Total number of contact hours			51			h		
4.	Number of ECTS credits for contact hours	2,0					ECTS		
5.	5.Number of independent study hours24				24				
6.	6. Number of ECTS credits for independent study hours		1,0				ECTS		
7.	7. Number of practical hours		50				h		
8.	8. Number of ECTS credits for practical hours 2,0				ECTS				
9.	9. Total study time 75					h			
10.	10. ECTS credits for the course 3 1 ECTS credit = 25-30 hours of study time 3						ECTS		

READING LIST

- 1. Y. Nakayama, R.F. Boucher: Introduction to Fluid Mechanics, Butterworth-Heinemann 2002
- 2. Y. A. Cengel, J. M. Cimbala: Fluid Mechanics. Fundamentals and Applications, McGraw-Hill Inc. 2014.
- 3. B. R., Munson, D. F. Young, T. H. Okiischi, W. W. Huebsch: Fundamental of Fluid Mechanics, John Wiley & Sons Inc., 2009.
- 4. J. B. Evett. C. Liu: 2 500 Solved Problems in Fluid Mechanics & Hydraulics, McGraw-Hill Inc., 1988.