

Annex9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-407
Course title in Polish	Podstawy automatyki
Course title in English	Fundamentals of Control Engineering
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Manufacturing Engineering and Metrol- ogy
Course leader	dr hab. inż. Leszek Płonecki, prof. PŚk.
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 4
Pre-requisites	None
Examination required (YES/NO)	YES
ECTS value	5

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15	15	15		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes:	Corresponding programme outcome code
		have a basic knowledge of types of automation	MiBM1_W01
	W01	systems, the principles of their operation and the purposefulness of their use.	MiBM1_W06 MiBM1_W23
			MiBM1_W01
	W02	have knowledge of principles of modelling simple	MiBM1_W06
		mechanical, electrical and fluid systems.	MiBM1_W23
		have knowledge of time-domain analysis of auto-	MiBM1_W01
	W03	mation components and systems.	MiBM1_W06 MiBM1_W23
			MiBM1_W01
	W04	have knowledge of analysis of automation compo- nents and systems in the frequency domain.	MiBM1_W06
			MiBM1_W23
Knowledge	W05	have knowledge of algebra of blocks diagram.	MiBM1_W01
Knowledge	000		MiBM1_W06 MiBM1_W23
		have knowledge related to stability testing and	MiBM1_W01
	W06	quality assessment of automatic control systems.	MiBM1_W06
			MiBM1_W23 MiBM1_W01
	W07	W07 have a basic knowledge of analysis and synthesis	
	of automation systems.		MiBM1_W06 MiBM1_W23
	W08		MiBM1_W01 MiBM1_W06
		have a basic knowledge of the measurement meth- ods used.	MiBM1_W00
		ous used.	MiBM1_W23
		have knowledge of simulation tests of automation	MiBM1_W01
	W09 systems.		MiBM1_W06 MiBM1_W23
	U01	have the skills to determine the transmittance of a	MiBM1_U01
	001	simple system based on a physical model.	MiBM1_U07
		have the skills to use Laplace transformation in the	MiBM1_U01
		analysis of automation elements and systems.	MiBM1_U07
	U03	have the skills to determine the response of the system to a given disturbance.	MiBM1_U01 MiBM1_U07
			MiBM1_U01
Skills	U04	have the skills to determine the frequency charac- teristics of the system.	MiBM1_U07
	1105	have the skills to determine the equivalent transmit-	MiBM1_U01
	U05	tance of the system.	MiBM1_U07
		have the skills to test the stability of the system and	MiBM1_U01
	U06	determine the values of quality indicators of the automation system.	MiBM1_U07
		have the skills to build a simulation model of an	MiBM1_U01
	U07	element or an automation system.	MiBM1_U07

	U08	have the skills to experimentally determine the re- sponse of the system to a given disturbance.	MiBM1_U01 MiBM1_U07 MiBM1_U12
	U09	have the skills to synthesize an automation system using basic methods.	MiBM1_U01 MiBM1_U07
Competence	K01	understands the need for constant replenishment of knowledge in the field of automation systems due to their dynamic development.	MiBM1_K01– MiBM1_K06
	K02	be aware of the impact of the use of automation systems on the development of production engineering.	MiBM1_K01– MiBM1_K06
	К03	understands the need for constant replenishment of knowledge in the field of automation systems due to their dynamic development.	MiBM1_K01– MiBM1_K06

COURSE CONTENT

Type of instruction*	Topics covered
lecture	Basic concepts in automation, general automation system diagrams and classification of automation systems, examples of automation systems. Description of linear elements and systems. Laplace transforms, operator transmittance and transmittance matrix, system description using state coordinates, determination of static characteristics and response to a given excitation from operator transmittance Static and dynamic properties of basic linear elements: proportional, order, integrating, differentiating, oscillating and delaying, and examples thereof. Block diagram algebra. Basic connections, the transformation of block diagrams, methods for determining the transfer function of complex systems. Laying block diagrams based on their physical diagrams. Determination and initial analysis of transmittance. Frequency characteristics. Spectral transmittance, types of characteristics, frequency characteristics. Spectral transmittance, types of characteristics. Characteristics of basic elements, logarithmic characteristics for serial connection, basic methods of experimental determination of frequency characteristics. Characteristics of typical control objects. Static and astatic object and their step and frequency characteristics, sexamples of objects. PID regulators. Structures and characteristics. Quality of automation systems. General conditions of stability, stability criteria: Hurwitz, Nyquist for amplitude-phase and logarithmic characteristics. Quality of automation systems. Selection of the type of controller, selection of the controller settings according to the essential features of the transient waveform, the Ziegler-Nichols method. Two-point control systems. Characteristics of regulators, waveforms in the constant value control system, correction of two-position regulators.
class	Determination of equations of automation elements. Laplace transformation. Deter- mining the responses of systems to given extortion. Algebra of blocks diagrams. Fre- quency characteristics. Stability of linear systems. Assessment of the quality of auto- mation systems

laboratory	Getting to know the possibilities of the MATLAB / SIMULINK environment used for the analysis and synthesis of control systems. Determination of time characteristics of basic dynamic objects. Determination of frequency characteristics of basic dynamic objects. Simulation test of PID controller. Parameters identification of control object. Testing of linear and angular position transducers. Testing the automatic temperature control system. Examination of the two-point control system.
------------	---

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)					
code	Oral examination	Written examination	Test	Project	Report	Other
W01-W09		Х				
U01-U09			Х		Х	
K01-K04						Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria			
lecture	examination assess- ment	The pass mark is a minimum of 50 points out of a possible 100 for the examination.			
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.			
laboratory	non-examination assessment	Regular class attendance.A pass mark for each post-lab report. A minimum of 50 points out of a possible 100 for the final in-class test.			

OVERALL STUDENT WORKLOAD

	ECTSweighting							
	Activity type		Stude	ent wor	kload		Unit	
1.	Scheduled contact hours		С	Lab	Р	S	h	
1.		15	15	15			11	
2.	Other contact hours (office hours, examination)	4	2	2			h	
3.	3. Total number of contact hours 53			h				
4.	Number of ECTS credits for contact hours	1		ECTS				
5.	Number of independent study hours	71		h				
6.	Number of ECTS credits for independent study hours	9		ECTS				
7.	Number of practical hours	83		h				
8.	Number of ECTS credits for practical hours	3,3				ECTS		

9.	Total study time	125	h
10.	ECTS credits for the course 1 ECTS credit =25-30 hours of study time	5	ECTS

READING LIST

- Norman S. Nise, Control Systems Engineering, John Wiley & Sons, Inc, 2011
 Dindorf R. Woś P., Development of hydraulic power systems, Kielce, 2016.
 Dindorf R., Takosoglu J., Woś P., Development of pneumatic control systems, Kielce, 2017.