

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1- S1-ME-312
Course title in Polish	Podstawy obróbki plastycznej
Course title in English	Fundamentals of Metal Forming
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Metal Science and Manufacturing Pro- cesses
Course leader	dr inż. Piotr Thomas
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	Fundamentals of Metal Forming - lec- ture
Examination required (YES/NO)	NO
ECTS value	1

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester			15		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	MiBM_W10 MiBM1_W12 MiBM1_W15	
	U01	At the end of the course, students will be able to use fundamental knowledge to select a type of metal forming technology in order to manufacture mechanical elements of a given shape.	MiBM1_U04 MiBM1_U08 MiBM1_U20
Okilla	U02	On completion of the course, on the basis lecture and the results obtained from laboratory exercises, student will be able to simple analyse selected metal forming processes.	MiBM1_U04 MiBM1_U08 MiBM1_U20
Skills	U03	At the end of this course, on the basis of the results ob- tained from laboratory exercises, student will be able to assess the influence of technological parameters on the shape, dimensions accuracy and quality of manufac- tured products by using metal forming methods.	MiBM1_U04 MiBM1_U08 MiBM1_U20
	U04	By the end of the course, student will be able to prepare report to discuss of obtained results from metal forming laboratory exercises	MiBM1_U04 MiBM1_U08 MiBM1_U20
	K01	On completion of the course, students will understand the need for and know the opportunities of gaining fur- ther professional qualifications, related to metal forming processes used in the manufacturing of various metal elements.	MiBM1_K01 MiBM1_K04 MiBM1_K06
Competence	K02	By the end of this course, students will be aware of the responsibility for their professional engagement and will be ready to comply with the principles of team work, taking the responsibility for tasks performed as a team.	MiBM1_K01 MiBM1_K04 MiBM1_K06
	K03	On completion of the course, the student will be aware of the social role of a graduate of a technology-oriented university and understand the need to inform in a com- prehensive way the general public about accomplish- ments in mechanical engineering.	MiBM1_K01 MiBM1_K04 MiBM1_K06

COURSE CONTENT

Type of instruction*	Topics covered
	1. Introduction to laboratory class, getting acquainted with the health and safety regu- lations in force in the metal forming laboratory, discussing of assessment criteria and the report template.
	2. Deep drawing of cylindrical drawpieces without collar.
laboratory	3. Blanking.
-	4. Bending of sheets.
	5. Bar drawing.
	6. Longitudinal rolling of flats
	7. Ewaluation of laboratory class.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)						
	Oral examination	Written examination	Test	Project	Report	Other	

W01		х		
U01		х	х	
U02		х	х	
U03			х	
U04			х	
K01				х
K02				х
K03				х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria			
laboratory	non-examination assessment	Regular class attendance. The pass mark is a minimum of 50% for each in-class post-lab test and each post-lab report.			

OVERALL STUDENT WORKLOAD

	ECTS weighting							
	Activity type		Unit					
1	Schooluled contact hours	L	С	Lab	Р	S	h	
1.	1. Scheduled contact hours			15			h	
2.	Other contact hours (office hours, examination)			2			h	
3.	Total number of contact hours			17			h	
4.	Number of ECTS credits for contact hours	0,7				ECTS		
5.	Number of independent study hours	8				h		
6.	Number of ECTS credits for independent study hours	0,3			ECTS			
7.	Number of practical hours	32			h			
8.	Number of ECTS credits for practical hours	1,3				ECTS		
9.	Total study time	25				h		
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	1				ECTS		

READING LIST

- 1. Instructions for laboratory exercises.
- 2. Miłek T.: Techniques of production. Kielce University of Technology, Kielce 2012 (<u>www.wmibm-moodle.tu.kielce.pl</u>)
- 3. Lange K: Handbook of metal forming, MCGraw-Hill Book Company,
- Pacanowski J.: Design of deep drawing process of axisymmetric drawpieces and design pressforming dies T1 Methods and directives for deep drawing of axisymmetric drawpieces, Kielce: Kielce University of Technology, 2018 (in Polish)
- 5. Golatowski T.: Design of deep drawing process and press-forming dies Selected problems. Warsaw: Warsaw University of Technology, 1984 (in Polish)

- 6. Marciniak Z Limit strains in deep drawing process of sheet metals, Warsaw: WNT, 1971 (in Polish)
- 7. Erbel J i inni.: Encyclopedia of manufacturing techniques used in the engineering industry. T 1, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2001 (in Polish).
- 8. Sińczak J. i inni: Metal forming processes. Laboratory exercises. Wydawnictwo naukowe AKA-PIT, Kraków 2001 (in Polish)..
- 9. Richert J.: Innovative methods of metal forming processes. Wydawnictwa AGH 2010 (in Polish).
- 10. Żaba K., Mamala A.: Metal forming of non-ferrous metals. Laboratory exercises. Rolling and drawing. Wydawnictwa AGH, Kraków 2011 (in Polish).