Kielce University of Technology

FACULTY OF MECHATRONICS AND MECHANICAL ENGINEERING

Annex9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-309
Course title in Polish	Techniki Laserowe
Course title in English	Laser Technology
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Terotechnology and Industrial Laser Systems
Course leader	Dr hab. inż. Włodzimierz Zowczak
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	Technical Physics
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction lecture class		class	laboratory	project	seminar	
No. of hours per semester	15		15			

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code	
Knowledge	W01	On completion of the course, students will have a basic theoretical knowledge of laser devices, especially those used in material processing	MiBM_W08	
	W02 On completion of the course, students will have a basic knowledge of the available laser processing methods		MiBM_W10	
Skills U01		On completion of the course, students will have the skills to choose the parameters of a simple laser processing process	MiBM1_U08	
0	On completion of the course, students will be aware of the of the risks associated with the use of laser techniques		MiBM1_K02	
Competence	K02	On completion of the course, students will be aware and understand the possibilities of energy-saving production created by laser technologies	MiBM1_K02	

COURSE CONTENT

Type of instruction*	Topics covered
lecture	 Historical remarks. Physical basics of laser radiation generation, construction of a resonator. Properties of laser radiation. Applications of lasers in technology and in everyday life Laser radiation sources used in material processing. Laser systems for processing. Laser waste technologies - cutting and drilling. Laser welding. Laser surface treatment. Laser additive technologies - 3D printing Risks related to laser technology, safety rules.
laboratory	Getting acquainted with the laboratory. Health and safety rules Laser beam examination Laser cutting Laser drilling of holes Laser welding Laser hardening Laser marking

^{*)} Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)							
code	Oral examination	Written examination	Test	Project	Report	Other		
W01			Х					
W02			Х		Х			
U01					Х			
K01			Х					
K02			Х					

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessmentcriteria		
lecture	non-examination assessment	A pass mark for the test covering the content of lectures.		
laboratory	non-examination assessment	A pass mark for each pre-lab in-class test and each post-lab report		

^{*)} Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

ECTSweighting							
	Activity type	Student workload				Unit	
4			С	Lab	Р	S	L
1.	Scheduled contact hours	15		15			h
2.	Other contact hours (office hours, examination)	2		2			h
3.	Total number of contact hours			32			h
4.	Number of ECTS credits for contact hours	1,3			ECTS		
5.	5. Number of independent study hours 18			h			
6. Number of ECTS credits for independent study hours		0,7				ECTS	
7.	7. Number of practical hours 25			h			
8.	8. Number of ECTS credits for practical hours 1			ECTS			
9.	9. Total study time		50				h
10.	ECTS credits for the course 1 ECTS credit =25-30 hours of study time	те 2			ECTS		

READING LIST

- T. Burakowski, T. Wierzchoń, Inżynieria powierzchni metali, WNT, Warszawa 1995 2.
- H. Klejman, Lasery, PWN, Warszawa 19793. Klimpel, Technologia spawania i cięcia metali, Wyd. Polit. Śląskiej 19974.
- J. Kusiński, Lasery i ichzastosowanie w inżynierii materiałowej, Wyd. Nauk. Akapit, 20005.
- W. Steen, J. Mazumder, Laser Material Processing, Springer 20106.
- W. Zowczak, Laser Material Processing, skrypt dostępny na portalu PŚk