

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-308
Course title in Polish	Metaloznawstwo II
Course title in English	Metal Science II
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Metal Science and Manufacturing Pro- cesses
Course leader	dr hab. inż. Marek Konieczny, prof. PŚk
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	Metal Science I
Examination required (YES/NO)	YES
ECTS value	5

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	30		30		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code	
Knowledge W01		On completion of the course, students will have a basic knowledge of metals and alloys used in mechanical engineering.	MiBM1_W11	
	U01 On completion of the course, students will be able to se- lect appropriate materials for their practical application.		MiBM1_U14	
Skills	U02	On completion of the course, students will have the abil- ity to self-educate in order to solve and carry out new tasks.	MiBM1_U21	
	K01	On completion of the course, students will understand the need of lifelong learning in order to improve profes- sional qualifications.	MiBM1_K01	
Competence	K02	On completion of the course, students will be aware of the importance of the role of a technical university gradu- ate and will understand the need to provide other people with information related to the field of study.	MiBM1_K06	

COURSE CONTENT

Type of instruction	Topics covered				
	1. Metallurgical process of steel production. Analysis of the iron-cementite phase equilibrium system.				
	2. Austenite diffusion transformations: pearlitic and bainitic transformations. Kinetics of austenite transformation - CTPi and CTPc graphs.				
	3. Diffusionless (martensitic) transformation of austenite. Transformations during tem- pering of hardened steel. The transformation of perlite into austenite.				
	4. Carbon steels (unalloyed). Influence of carbon content on the microstructure and mechanical properties of annealed steel. Steel heat treatment technology: annealing, hardening and tempering of carbon steels.				
	5. White cast iron. Gray cast iron - Fe - graphite phase equilibrium system. Malleable cast iron. Influence of the geometrical form of graphite particles and the type of matrix on the mechanical properties of cast iron.				
	6. Alloying elements in steel - division into elements forming carbides and elements dissolving in ferrite. Classification of alloy carbides. Influence of alloying elements on the kinetics of austenite transformation. Hardenability of steel.				
Lecture	7. Influence of alloying elements on the martensitic transformation, transformation during tempering and the selection of austenitization temperature.				
	8. Strengthening mechanisms of metals and their alloys: work hardening, solution hardening, by grain size reduction, dispersion and precipitation hardening, and hardening by martensitic transformation.				
	9. Surface treatments of steel.				
	10. Rules for marking steel according to PN-EN. Steels for flat products.				
	11. Structural steels. Machine steels.				
	12. Tool steels. Corrosion-resistant steels.				
	13. Aluminium - properties, metallurgical manufacturing process. Aluminium alloys. Division into casting alloys and alloys for plastic processing. Precipitation strengthen- ing of aluminium alloys. Use of aluminium alloys.				
	14. Copper - properties, copper metallurgy. Copper alloys: brass, bronze, copper- nickel. Division into casting alloys and alloys for plastic processing. The use of copper and its alloys.				
	15. Alloys of other non-ferrous metals.				
laboratory	1. Influence of carbon content on the microstructure and mechanical properties of car- bon steel				
_	2. Annealing of steels				

3. Hardening of carbon steels
4. Tempering of hardened steels
5. Hardenability of steel
6. Heat treatment of alloy steels
7. Aluminium alloys
8. Copper alloys
9. Alloys of other non-ferrous metals
10. Surface treatment
11. Sinters
12. Metallic composites

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)					
code	Oral examination	Written examination	Test	Project	Report	Other
W01		Х	Х		Х	
U01		Х	Х		Х	
U02		Х	Х		Х	
K01						Observation of attitude and behav- iour
K02						Observation of attitude and behav- iour

ASSESSMENT TYPE AND CRITERIA

Mode of instruction	Assessment type	Assessment criteria
lecture	examination assess- ment	The pass mark is a minimum of 50% for the examination test.
laboratory	non-examination assessment	The pass mark is connected with submitting reports and ob- taining at least 50% of test points during classes.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type		Student workload				
1	Schodulad contact hours	L	С	Lab	Р	S	h
1.				30			
2.	2. Other contact hours (office hours, examination)			2			h
3. Total number of contact hours				66			h
4. Number of ECTS credits for contact hours				2,6			ECTS
5. Number of independent study hours				59			h

6.	Number of ECTS credits for independent study hours	2,4	ECTS
7.	Number of practical hours	63	h
8.	Number of ECTS credits for practical hours	2,5	ECTS
9.	Total study time	125	h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	5	ECTS

READING LIST

- Askeland D.R.: The Science and Engineering of Materials.
 Callister W.D.: Materials Science and Engineering: An Introduction
 Ashby M.F., Jones D.R.: Engineering Materials: part 1 and 2.
 Budinski K.G., Budinski M.K.: Engineering Materials Properties and Selection.
 Konieczny M.: Metal Science Laboratory.