

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-307
Course title in Polish	Komputerowy zapis konstrukcji
Course title in English	Computer Aided Engineering Drawing
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Machine Design
Course leader	Robert Molasy, BEng, PhD
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	Technical drawing, Fundamentals of Standardization and Innovation
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	10		20		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code	
	W01	They will have knowledge of computer-aided technolo- gies used to design and manufacture machines and mechanical systems.	MiBM1_W05	
Knowledge	W02	They will know how to develop and analyse technical documentation, which involves engineering design using graphics and calculation software.	MiBM1_W12	
	W03	Will have the knowledge of the principles of designing machine parts and mechanical structures used in me- chanics and machine design, and knows the rules for their selection and safety assessment.	MiBM1_W19	
Skills	U01	Will be able to obtain information from literature, data- bases, and other sources in various languages, concern- ing mechanics and machine design; can combine the obtained information, analyze, interpret, and draw con- clusions, formulate and justify opinions.	MiBM1_U03	
	U02	They will be able to use the basic forms of communica- tion for mechanical engineering purposes, especially for machine design, operation and maintenance such as technical drawings, computer algorithms and mathemati- cal description.	MiBM1_U07	
CompetenceK01They will be aware of and understand the relationships between engineering and non-engineering activities, including their impact on the environment and the re- sponsibility for decision-making		MiBM1_K02		

COURSE CONTENT

Type of instruction*	Topics covered			
	1. Presentation of the Solidworks environment			
l	2. Presentation of sketching environment and its features. Dimensioning of sketches.			
	Problem of fully defined sketch.			
	3. Presentation of 3D features.			
	4. Modifications of 3d features.			
lecture	5. Application of toolboxes (creation of holes), arrays.			
	6. Presentation of 2D drawing environment and its features.			
	7. Setting dimensioning parameters. Rules of dimensioning			
	8. Defining the surface roughness and tolerances			
	8. Defining DG&T			
	10. Test			
	1. Presentation of the SolidWorks environment. Basic options for creating a sketch.			
	2. Application of Extruded Boss/Base, Extruded Cut, Revolved Boss/Base, Revolved Cut for the simple parts.			
	3. Creation of a 3D part.			
	4. Application of Section View, Broken-out Section.			
laboratory	5. Drawing of a threaded part			
	6. Half section			
	7. Partial section, broken-out section			
	8. Drawing of a gear			
	9. Drawing of a shaft			
	10. Test			

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)						
	Oral examination	Written examination	Test	Project	Report	Other	
W01			Х	Х			
W02			Х	Х			
W03			Х	Х			
U01			Х	Х			
U02			Х	Х			
K01						Х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination assessment	Development of a 3D model and a technical drawing for this part.
laboratory	non-examination assessment	Regular class attendance. A pass mark for each in-class assignment. The pass mark is a minimum of 50% for the class assignments.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

ECTS weighting							
	Activity type	Student workload				Unit	
1.			С	Lab	Р	S	h
1.	Scheduled contact hours	10		20			
2.	Other contact hours (office hours, examination)	2		2			h
3.	Total number of contact hours			34			h
4.	Number of ECTS credits for contact hours	1.4			ECTS		
5.	Number of independent study hours	16			h		
6.	6. Number of ECTS credits for independent study hours		0.6				
7.	7. Number of practical hours		33				
8.	8. Number of ECTS credits for practical hours 1.3				ECTS		
9.	Total study time 50			h			
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2				ECTS	

READING LIST

- 1. James D. Bethune, Engineering Design and Graphics with SolidWorks® 2016, Pearson Education, Inc., 2017
- 2. F. E. Giesecke, S. Lockhart, M. Goodman, C.M. JOHNSONTechnical drawing with engineering graphics, Pearson Education, Inc., 2016.

3. G. Jankowski, R. Doyle, SolidWorks® For Dummies, Wiley, 2011