

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-306
Course title in Polish	Mechanika ogólna ll
Course title in English	Engineering Mechanics II
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Mechanics
Course leader	Leszek Radziszewski
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	None
Examination required (YES/NO)	YES
ECTS value	3

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15	15			

LEARNING OUTCOMES

Category of outcome	Out- come code	Corresponding programme outcome code	
Knowledge	W01	The student has basic knowledge of: mathe- matics, simple cases of the dynamics of a ma- terial point and a rigid body. He knows the con- cept of dynamic equation, initial conditions.	MiBM1_W01
	W02	The student has an ordered, theoretically founded knowledge in the field of kinematics and dynamics. He knows the terms: force work, kinetic energy, potential energy	MiBM1_W02 MiBM1_W14
Skills	U01	The student has language skills in the field of technical vocabulary, with particular emphasis on mechanics and machine construction, can find the equation of motion of a material point under the action of a time-dependent or veloc- ity-dependent force.	MiBM1_U06
	U02	The student has the ability to self-educate, can determine the equation of the rotational motion of a rigid body under the action of a system of forces. He can perform a dynamic analysis of a simple mechanical system	MiBM1_U21
Competence K01 The student understands the need to con- stantly supplement and expand knowledge in the field of mechanics.		MiBM1_K01	

COURSE CONTENT

Type of instruction*	Topics covered
lecture	-Classification of solids movement in relation to the reduction of forces. Description of linear rectilinear motion of a solid body. Second law of dynamics. Classification of variable forces. Rectilinear translational mo- tion due to time and velocity dependent force. Movement of a solid as a result of a force dependent on the position. Spring force, damped har- monic oscillator. Kinetic energy and work in translational motion. Poten- tial energy and power. Principle of mechanics of translational motion of a solid. Description of the rotational movement of a solid around a fixed axis. Rotation of the solid around a fixed axis due to the action of a mo- ment of force dependent on time, speed and position. Kinetic energy and work in rotational motion. Angular momentum. Principles of mechanics of rotational motion. Plane motion of a rigid body. Equations of motion, energy and work in this motion. The d'Alembert principle. Dynamic reac- tions in bearings in rotating motion.
class	Solving problems within the scope of the lecture.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)						
code	Oral examination	Written examination	Test	Project	Report	Other	
W01		Х					
W02		Х					
U01			Х				
U02			Х				
K01						Х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria		
lecture	examination assess- ment	The pass mark is a minimum of 50 points out of a possible 100.		
class	non-examination assessment	Regular class attendance. The pass mark is a minimum of 50 points for each of the two in-class tests.		

OVERALL STUDENT WORKLOAD

ECTS weighting							
	Activity type	Student workload				Unit	
1	4 Cohodulad contact hours		С	Lab	Р	S	h
1.		15	15				
2.	Other contact hours (office hours, examination)	4	2				h
3.	Total number of contact hours			36			h
4.	Number of ECTS credits for contact hours	1,4			ECTS		
5.	Number of independent study hours	39			h		
6. Number of ECTS credits for independent study hours		1,6				ECTS	
7.	Number of practical hours			38			h
8.	8. Number of ECTS credits for practical hours		1,5				ECTS
9.	Total study time			75			h
10.	ECTS credits for the course1 ECTS credit = 25-30 hours of study time			3			ECTS

READING LIST

- 1) Dietmar Gross, Werner Hauger, Jörg Schröder, Wolfgang A. Wall, Nimal Rajapakse, Engineering Mechanics, 2nd Edition, 2018 Springer
- 2) T.W.B. Kibble F.H. Berkshire, Classical Mechanics, Imperial College Press 5th Edition
- 3) Vitor Dias da Silva, Mechanics and Strength of Materials, Springer-Verlag Berlin Heidelberg 2006
- 4) Hibeler R.C., Engineering mechanics Dynamics12th edition

5) Nielsen, S. R. K. (2004). Vibration Theory, Vol. 1: linear vibration theory. (3rd edition ed.) Aalborg: Department of Civil Engineering, Aalborg University. U/, Vol.. U2004-1