

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-305
Course title in Polish	Wytrzymałość materiałów
Course title in English	Strength of Materials
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Mechanics
Course leader	Radziszewski Leszek
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	None
Examination required (YES/NO)	YES
ECTS value	6

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	30	30	15		

LEARNING OUTCOMES

Category of outcome	ory come Course learning outcomes code		
	W01	The student has elementary knowledge of the basic quantities describing the behavior of deformable bodies such as stress, displacement, deformation and under- stands the meaning of their universality	MiBM-W01 MiBM -W02
Knowledge	W02	The student has knowledge of simple strength cases for bar structures such as tension, shear, bending, torsion	MiBM -W02 MiBM -W12
Thoweuge	W03	The student knows selected safety issues of materials and structures, such as strength hypotheses, selected theorems and energy methods, elements of the theory of thin plates, thick-walled pipes, the basics of the analysis of structural stability and the phenomenon of material fa- tigue	MiBM _W01 MiBM _W02 MiBM _W07
	U01	The student is able to perform simple analyzes for sim- ple strength cases such as tension, shear, bending, tor- sion	MiBM -U13 MiBM -U02 MiBM -U06
Skills	U02	The student is able to perform simple analyzes concern- ing the determination of displacements in bar structures, the calculation of reduced stresses and the determina- tion of critical loads	MiBM -U13 MiBM -U08
	U03 The student has the ability to assess the usefulness of strength analyzes in solving simple engineering prob-		MiBM -U19 MiBM -U13
	U04	The student is able to work individually and in a team	MiBM _U02
Competence	K01	The student understands the need to constantly supple- ment knowledge in the field of material strength	MiBM -K01 MiBM -K02 MiBM -K04
	K02	The student is aware of the responsibility for their own work and responsibility for the jointly performed task	MiBM _K04

COURSE CONTENT

Type of instruction*	Topics covered
	1. Fundamentals of material strength, tasks, assumptions and simplification of the subject. Material models, classification of construction models.
	2. Definition of stresses. Displacement vector. State of deformation at a point - rela- tive elongations, form deformations, geometrical relationships, main directions.
	3. Elementary physical relationships, tensile diagram for mild and high carbon steel. Hooke's law in unidirectional stress. Generalized Hooke's law.
	4. Bar cross-section geometry - centers of gravity, axial and polar moment of inertia of the section. Main central axes of inertia of the cross-section.
	5. Internal forces in a bar, classification of strength cases. Tension - analysis of dis- placements, strains and stresses, strength condition.
lecture	6. Statically indeterminate tensile stresses, stresses caused by assembly errors, ther- mal stresses. Shear, pure shear, technological shear
	7. Torsion of circular bars, analysis of deformations and stresses, maximum stresses and angle of torsion of the shaft, strength condition
	8. Bending, diagrams of shear forces and bending moments, description of defor- mation of a beam subjected to bending, analysis of stresses in a bending bar, strength condition. Mohr circle.
	Shear stresses in bending. Beam deflection lines, differential equation of deflec- tion lines.
	10. Strain energy. Strength hypotheses - the Huber-Mises-Hencky hypothesis, the greatest shear stress hypothesis.

	11. Practical use of strength hypotheses for the analysis of complex cases of bar
	strength.
	12. Bar buckling - Euler's formula, buckling in the elastic-plastic range.
	13. Deformation energy of bar structures, the principle of reciprocity of Betti's works,
	determination of displacements in bar structures by the Maxwell-Mohr method.
	14. Elements of the theory of thin plates: assumptions and basic relationships.
	15. Stress concentration. Fatigue of materials
	1. Determination of the centers of gravity as well as axial and polar moments of iner-
	tia of the bar cross-section. Determination of the principal central axes of inertia and
	principal central moments of inertia. Strength indicators, Mohr circle
	2. Calculation of stresses, deformations and displacements in bars subjected to ten-
	sion (compression), strength condition.
	3. Problems (tension, compression) statically indeterminate. Pure shear, technical
	shear. Plane stress analysis - determination of principal stresses, transformation of
	the stress state.
	4. Deformation state analysis. Torsion of round bars, maximum stresses and shaft
	torsion angle, strength condition. Colloquium No. 1.
	5. Diagrams of shear forces and bending moments in bending bars, determination of
	stresses in a bending bar.
class	6. Determination of the deflection lines of bending bars. Analysis of the stability of
01000	compressed bars.
	7. Determination of Euler's critical force. Tetmajer-Jasiński curves. Analysis of the
	state of stresses and deformations, Mohr's circles.
	8. Analysis of selected cases of complex strength. Energy of stretching, twisting and
	bending.
	9. Generalized Hooke's law. Huber strength hypotheses and maximum tangential
	stresses. Colloquium No. 2.
	10. Reduced stresses. Complex strength of the rod.
	11. Determination of displacements in rod systems using the Maxwell-Mohr method.
	12. Using the Castigliano and Menabrea theorems to determine statically indetermi-
	nate displacements and reactions.
	13. Analysis of stresses and deformations of a circular disk.
	14. Strength analysis of thick-walled pipes. Colloquium No. 3
	1. Static tensile test
	2. Determination of stresses in a bending beam using the strain gauge method
	3. Determination of the center of transverse forces in the channel section
	4. Determination of Euler's critical force
laboratory	5. Determination of Young's modulus on the basis of beam deflection analysis, deter-
laboratory	mination of statically indeterminate reaction
	6. Elastooptics I. Determination of the model constant
	7. Elastooptics II. Determination of the shape factor when bending a flat sample with
	a one-sided notch
	8. Colloquium

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)						
code	Oral examination	Written examination	Test	Project	Report	Other	
W01		Х	Х		Х		
W02		Х	Х		Х		
W03		Х	Х		Х		
U01		Х	Х		Х		
U02		Х	Х		Х		
U03		Х	Х		Х		
U04		Х	Х		Х		

K01	Х	Х	Х	
K02	Х	Х	Х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	examination assess- ment	The pass mark is a minimum of 50% for the final in-class test.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in- class tests.
laboratory	non-examination assessment	The pass mark is a minimum of 50% for each post- lab report.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting							
	Activity type	Student workload					Unit	
1	Scheduled contact hours	L	С	Lab	Р	S	h	
1.		30	30	15			11	
2.	Other contact hours (office hours, examination)	2	2	2			h	
3.	Total number of contact hours			81			h	
4.	Number of ECTS credits for contact hours		3,24			ECTS		
5.	Number of independent study hours	24			h			
6.	Number of ECTS credits for independent study hours 0,96				ECTS			
7.	Number of practical hours	45			h			
8.	Number of ECTS credits for practical hours	1,8			ECTS			
9.	Total study time	105			h			
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	6				ECTS		

READING LIST

- 1. Beer, Johnston, & DeWolf, "Mechanics of Materials", 4th Edition, McGraw Hill,
- 2. Dietmar Gross, Werner Hauger, Jörg Schröder, Wolfgang A. Wall, Nimal Rajapakse, Engineering Mechanics, 2nd Edition, 2018 Springer
- 3. T.W.B. Kibble F.H. Berkshire, Classical Mechanics, Imperial College Press 5th Edition
- 4. Vitor Dias da Silva, Mechanics and Strength of Materials, Springer-Verlag Berlin Heidelberg 2006
- 5. Z. Dyląg, A. Jakubowicz, Z. Orłoś: Wytrzymałość materiałów, WNT, Warszawa, T. 1 1996, T. 2 1997
- 6. M. Banasiak, K. Grossman, M. Trombski: Zbiór zadań z wytrzymałości materiałów, wydawnictwo naukowe PWN, Warszawa, 1998