

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-304
Course title in Polish	Podstawy informatyki
Course title in English	Fundamentals of Computer Science
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Applied Computer Science and Weap- ons Engineering
Course leader	dr hab. inż. Izabela Krzysztofik, prof. PŚk
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 3
Pre-requisites	calculus
Examination required (YES/NO)	NO
ECTS value	4

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15		45		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code	
Knowledge	W01	Have a basic knowledge of the Scilab environment. Know basic operations, functions and statements.	MiBM1_W05	
Knowledge	W02	Know the basic function blocks of the Scilab/Xcos envi- ronment.	MiBM1_W05	
Skills	U01	Create simple scripts using conditional and interrupt statements and loops, including operations on matrices and vectors.	MiBM1_U01 MiBM1_U02	
	U02	Be able to build scripts used to solve polynomials, non- linear equations and ordinary differential equations.	MiBM1_U01 MiBM1_U02	
	U03	Be able to build models in Scilab/Xcos environment.	MiBM1_U01 MiBM1_U12	
Competence K0 ⁻		Understand the need and know the possibilities of con- tinuous education and raising professional competence in the field of computer science.	MiBM1_K01	

COURSE CONTENT

Type of instruction*	Topics covered
lecture	Introduction to Scilab environment: data types, expressions, operators. Operations on matrices. Scripts, conditional and interrupt statements and loops – examples. Graphics – plotting two and three dimensional graphs, creating histograms and curves in space. Solving linear equations and systems of equations and the basics of solving nonlinear equations. Polynomials – definitions, operations and matrices of polynomials. Methods of solving equations and systems of ordinary differential equations. Modelling of systems in Scilab/Xcos environment – basic function blocks and operations, examples.
laboratory	Conduct laboratory exercises in Scilab and Scilab/Xcos environment in the following topics: Matrix operations. Simple programs. Conditional and interrupt statements. Loops. Defining functions. Plotting 2D and 3D graphs. Solving equations and systems of nonlinear equations. Working with polynomials. Solving equations and systems of ordinary differential equations. Simple models and graphics in Xcos package. Modelling and simulation of motion of mechatronic systems in Xcos package.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)						
	Oral examination	Written examination	Test	Project	Report	Other	
W01			х				
W02			х				
U01			х				
U02			х				
U03			х				
K01						x	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination as- sessment	The pass mark is a minimum of 50 points out of a possible 100.
laboratory	non-examination assessment	Regular class attendance. The pass mark is a minimum of 50 points out of a possible 100 for all in-class tests.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

ECTS weighting							
	Activity type	Student workload				Unit	
1	Scheduled contact hours	L	С	Lab	Р	S	h
1.		15		45			
2.	Other contact hours (office hours, examination)	2		2			h
3.	Total number of contact hours			64			h
4.	Number of ECTS credits for contact hours	2,6			ECTS		
5.	Number of independent study hours	36			h		
6.	6. Number of ECTS credits for independent study hours		1,4				ECTS
7.	Number of practical hours			75			h
8.	Number of ECTS credits for practical hours3,0			ECTS			
9.	Total study time			100			h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	4			ECTS		

READING LIST

- 1. S. Annigeri, An Introduction to Scilab, B. V. Bhoomaraddi College Of Engineering & Technology, 2009.
- 2. M. Baudin, , Introduction to Scilab, The Scilab Consortium Digiteo, 2010.
- 3. S. L. Campbell, J. P. Chancelier, R. Nikoukhah, Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4, Springer 2010.
- 4. J. P.Chancelier, F. Delebecque, C. Gomez, Introduction a Scilab, Springer, 2010.
- 5. S. Nagar, Introduction to Scilab for Engineers and Scientists, Apress, 2017.
- 6. Scilab documentation: http://www.scilab.org.