

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-211a
Course title in Polish	Mikro/Nanotechnika
Course title in English	Micro and Nanotechnology
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Mechanics
Course leader	Dr hab. inż. Monika Madej, prof. PŚk
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	elective
Language of instruction	English
Semester of delivery	semester 2
Pre-requisites	None
Examination required (YES/NO)	YES
ECTS value	3

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15		15		

LEARNING OUTCOMES

Category of outcome code Course learning outcomes			Corresponding programme outcome code
	W01	The student has the knowledge needed to organize work in accordance with health and safety	MiBM1_W04
Knowledge	W02	Has basic knowledge of nanotechnology and micro- and nanotechnology, with particular emphasis on their appli- cation in mechanics and machine construction	MiBM1_W13
	W03	Has a comprehensive knowledge of surface engineering, including various related issues, e.g. modeling of the sur- face layer, assessment of the condition and durability of the surface, tribological tests	MiBM1_W22
	U01	He can perform measurements of basic geometrical, me- chanical and electrical quantities and others related to the process of manufacturing machine parts, is able to inter- pret the obtained results, analyze the measurement un- certainty and draw conclusions	MiBM1_U11
Skills	U02	Can use analytical, numerical and simulation methods to formulate and solve engineering tasks in the field of me- chanics and machine construction, can properly interpret and use the results of the experiment	MiBM1_U12
	U03	The student is able to choose the appropriate engineering materials to ensure the correct operation of the machine	MiBM1_U14
	K01 Is aware of the importance and understands the relation- ship between engineering and non-technical activities, in terms of the effects of environmental impact and respon- sibility for the decisions made		MiBM1K03
Competence	K02	Can think and act in an entrepreneurial way, understand- ing the needs of society and the laws governing the natu- ral environment	MiBM1_K05
	K03	Is aware of the social role of a technical university gradu- ate and understands the need to provide public opinion in an understandable way with information on achievements related to the field of mechanics and machine building	MiBM1_K06

COURSE CONTENT

Type of instruction*	Topics covered
	1. The concept of micro / nanotechnology, the genesis of micro / nanotech- nology, definitions, world situation, development trends, the importance of micro / nanotechnology used in the construction of machines and devices.
	2. Material issues, fullerenes, nanotubes, polymers, nanocomposites in micro / nanotechnology, manufacturing techniques, micro / nanomachining.
locturo	3. Micro / nanodevices and their application. Construction and principles of operation.
lecture	4. Fundamentals of adaptronics and biomimetics, biological micro / nanostruc- tures, rotary and linear biological nanomotors.
	5. Basic devices for micro / nano research: confocal microscope with interfer- ometric mode, AFM, nano hardness testers, micro / nanoscratch tester, other research equipment, applications. Construction and their operation.
	6. Applications of micro / nano-devices in everyday life, research techniques as well as mechanics and machine building in various industries.

	1. Introduction to the laboratory classes, tools and research environment of micro / nanotechnology.
	2. Basic methods, structure and operation of apparatus for structure studies on the nano scale (AFM atomic force microscopy, confocal microscopy with interferometric mode, SEM microscopy).
	3. Basic methods, structure and operation of apparatus for tribological tests.
laboratory	4. Basic methods, structure and operation of apparatus for testing mechanical
	properties in the nano-scale. hardness, adhesion.
	5. Studies of tribological properties in the nanoscale.
	6. Studies of micro / nanostructures: confocal microscopy with interferometric mode, AFM microscopy, scanning electron microscopy.
	7. Mechanical tests in the nano scale: hardness, adhesion.
	8. Investigation of the adhesive ability and energy state of the surface: wetta- bility, surface energy, adhesion.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)						
code	Oral examination	Written examination	Test	Project	Report	Other	
W01			х				
W02		х	х				
W03		х	х		х		
U01					x		
U02					х		
U03		х	х		х		
K01			х				
K02			x				
K03					х		

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	examination assess- ment	The pass mark is a minimum of 50% for the final in-class test.
class	non-examination assessment	The pass mark is a minimum of 50% for each in-class-test.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting							
	Activity type		Student workload Unit					
	1. Scheduled contact hours	L	С	Lab	Р	S	h	
1.		15		15			- 11	
2.	Other contact hours (office hours, examination)	4		2			h	
3. Total number of contact hours 36		h						
4.	Number of ECTS credits for contact hours			1,4			ECTS	

5.	Number of independent study hours	39	h
6.	Number of ECTS credits for independent study hours	1,6	ECTS
7.	Number of practical hours	38	h
8.	Number of ECTS credits for practical hours	1,5	ECTS
9.	Total study time	75	h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	3	ECTS

READING LIST

- 1. Nanonauki i nanotechnologie' praca zbiorowa pod red. Adama Mazurkiewicza (wersja elektroniczna), Instytut Technologii Eksploatacji ITEE - PIB / 2007
- K. Kurzydłowski, M. Lewandowska: Nanomateriały inżynierskie konstrukcyjne i funkcjonalne" Wydawnictwo Naukowe PWN Warszawa 2010
- 3. Nanoscale Science and Technology, eds. R.W. Kelsall, I.W.Hamley, M.Geoghegan.John Wiley & Sons Ltd, Chichester 2005.
- 4. Handbook of Nanotechnology, ed,. Bushan, Springer Science + Biznes Media. Springer Berlin Heildelberg, New York 2007
- 5. Kapuścik A. Produkcja w skali "nano". Inspektor Pracy 2006, 10, 11-13
- 6. Rymuza Z.: Konstrukcja i eksploatacja mikrołożysk ślizgowych, Rozdział w monografii pod redakcją Ozimina D.: Tarcie, zużycie, smarowanie wybranych węzłów tribologicznych, 2013, Wydawnictwo Politechniki Świętokrzyskiej w Kielcach, ss. 66-78
- 7. Rymuza Z.: Tribology of Miniature Systems, w: Encyclopedia of Tribology, eds. Wang Q. Jane, Chung Yip-wah, 2013
- 1.