

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-MiBM-210b
Course title in Polish	Podstawy inżynierii odwrotnej
Course title in English	Fundamentals of Reverse Engineering
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Manufacturing Engineering and Metrol- ogy
Course leader	dr hab. inż. Jerzy Bochnia, Prof. PŚk
Approved by	

COURSE OVERVIEW

Course type	programme-specific
Course status	elective
Language of instruction	English
Semester of delivery	semester 2
Pre-requisites	None
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15		15		

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	Has ordered knowledge of computer science and graphics engineering and modern information technolo- gies supporting the solution of various types of engineer- ing problems related to mechanics and machine construc- tion.	MiBM1_W05
	W02	Has detailed knowledge of the manufacturing techniques od machine parts, including subtractive and non-waste techniques, methods of bonding materials, taking into ac- count additive and laser technologies, issues of rapid pro- totyping and reverse engineering, also has basic knowledge about the construction of various types of sys- tems for processing and shaping materials.	MiBM_W10
Skills	U01	Can use analytical, numerical and simulative methods to formulate and solve engineering tasks in the field of me- chanics and machine construction, can properly interpret and use the result.	MiBM1_U12
	U02	Can work individually and in a team; knows how to esti- mate the time needed to complete the commissioned task; is able to establish a work schedule that ensures meeting deadlines	MiBM1_U20
	U03	Has the ability to self-educate in order to solve and imple- ment new tasks and improve professional competences.	MiBM1_U21
Competence	K01	Is aware of the responsibility for their own work, under- stands the necessity to submit to the rules of teamwork and taking responsibility for jointly performed tasks.	MiBM1_K04
	K02	Is aware of the social role of a technical university gradu- ate and understands the need to provide the public with comprehensible information on the achievements related to the field of study mechanics and machine construction	MiBM1_K06

COURSE CONTENT

Type of instruction*	Topics covered
lecture	Theoretical foundations of reverse engineering. Contact and non-contact methods of coordinate measurement technique in reverse engineering. 3D scanning as a reverse engineering tool. Digitization methods used in reverse engineering. Triangulation point clouds. Methods of analysis and processing of the obtained measurement results. Methods of creating digital models of objects with complex shapes. Converting of the surface model to the solid model. Data preparation for manufacturing of products. Methods of making models with additive technologies.
laboratory	 Laboratory regulations, rules for carrying out and completing exercises. Introduction to the Laboratory of Reverse Engineering. Performing the following laboratory exercises: 1. Construction and operation of an optical 3D scanner. Preparing the scanner for work. 2. Scanning of selected elements with the use of an optical 3D scanner. 3. Processing the obtained point cloud, polygonization of the point cloud. 4. Postprocessing the surface model. Performing a dimensional inspection. 5. Convert to CAD program. Development of a 3D document based on spatial scanning.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)						
	Oral examination	Written examination	Test	Project	Report	Other	
W01			Х				
W02			Х				
U01			Х		Х		
U02					Х		
U03					Х		
K01					Х	Х	
K02						Х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	examination assess- ment	Obtaining 50% of the points of the final test
laboratory	examination assess- ment	Attendance. Obtaining at least 50% of the marks in the final test. Obtaining positive ratings from all reports.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

ECTS weighting							
	Activity type	Student workload					Unit
1	1 Schodulad contact hours		С	Lab	Р	S	h
1.		15		15			11
2.	Other contact hours (office hours, examination)	2		2			h
3.	Total number of contact hours			34			h
4.	Number of ECTS credits for contact hours	1,4			ECTS		
5.	Number of independent study hours	16			h		
6.	6. Number of ECTS credits for independent study hours		0,6				ECTS
7.	Number of practical hours			25			h
8.	8. Number of ECTS credits for practical hours		1				ECTS
9.	Total study time			50			h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	2			ECTS		

READING LIST

- 1. Wyleżoł M.: CATIA. Podstawy modelowania powierzchniowego i hybrydowego. Helion 2003.
- Skarka W, Mazurek A.: CATIA. Podstawy modelowania i zapisu konstrukcji. Helion 2005.
 Wełyczko A.: CATIA V5. Sztuka modelowania powierzchniowego. Helion 2009.
 Babiuch M.: SolidWorks 2006 w praktyce. Helion 2007.

- 5. Karbowski K.: Podstawy rekonstrukcji elementów maszyn i innych obiektów w procesach wytwarzania. Politechnika Krakowska, monografia 367, 2008.
- 6. Adamczak St., Błasiak S., Bochnia J., Pomiary wielkości geometrycznych modeli kształtowanych przyrostowo z zastosowaniem skanera 3D, Mechanik, Tom: 87, Zeszyt: 8-9, (2014), pp. 17-25.
- 7. Bochnia J.: Zastosowanie skanowania 3D w inżynierii odwrotnej, Mechanik, 3/2019.