

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-208
Course title in Polish	Podstawy Elektroniki
Course title in English	Fundamentals of Electronics
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Automation and Robotics
Course leader	Dr inż. Adam Szcześniak
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 2
Pre-requisites	mathematics, physics, electrical engi- neering
Examination required (YES/NO)	NO
ECTS value	2

Mode of instruction lecture class labora		laboratory	project	seminar	
No. of hours per semester	15	-	15	-	-

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code
	W01	Have knowledge of basic elements used in the construc- tion of electronic devices.	MiBM1_W06
	W02	Have knowledge of the principle of operation and char- acteristics of basic electronic components.	MiBM1_W06
Knowledge	W03	Have knowledge of the principle of operation of basic electronic circuits.	MiBM1_W06
	W04	Have knowledge of the rules of working with instruments for measuring electrical quantities, including an oscillo-scope.	MiBM1_W06
	U01	Have a basic practical knowledge of using electronic devices for measuring electrical quantities, including an oscilloscope	MiBM1_U11
Skills	U02	Have a basic practical knowledge of a simple electronic system and determine its parameters on the basis of measurements of electrical quantities at characteristic points.	MiBM1_U11
	U03	Know how to choose the values of the elements of a simple electronic system to obtain the given parameters	MiBM1_U11
	U04	Know how to develop documentation concerning the conducted research	MiBM1_U04
Competence	Competence K01 Know the latest and upcoming trends in the field of elec- tronics due to the extremely rapid development of this field of technology.		MiBM1_K01

COURSE CONTENT

Type of instruction*	Topics covered			
	Definition of electronics, atomic structure, doped and undoped semiconductors.			
	N-p junction, operating states of n-p junction.			
	Semiconductor diodes: switching, rectifying, capacitive, Zener, Shottky, tunnel. Characteristics, operation, application.			
	Bipolar transistors, characteristics, basic work circuits. Darlington system.			
lecture	Unipolar junction and insulated gate transistors, characteristics, basic layout circuits.			
	Uncontrolled rectifiers. Thyristors and triacs. Converters.			
	Small-signal transistor amplifiers. Transistor bias circuits. Interstage couplings.			
	Feedback in transistor amplifiers. Small signal selective amplifiers.			
	Differential amplifier, power amplifiers.			
	Operational amplifier. Basic linear circuits with an operational amplifier.			

	Power systems: parametric stabilizers, feedback stabilizers, impulse stabilizers.
	Introductory classes. Instruction in the operation of laboratory equipment (multimeters, oscilloscopes, gen- erators). Health and safety training.
	Testing of uncontrolled and controlled rectifier systems. Voltage multiplier.
	Testing voltage stabilizers with continuous and impulse action.
laboratory	Bipolar transistors in basic electronic circuits. Single-stage amplifier of variable sig- nals, multi-stage amplifier, control of the electromagnetic relay with a transistor key.
	Push-pull amplifier with a differential amplifier in the driving stage.
	Application of operational amplifiers in linear electronic circuits. Summing amplifier, one-pole filter, active filter with multiple feedback.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)						
code	Oral examination	Written examination	Test	Project	Report	Other	
W01 – W04			Х				
U01 – U03						Х	
U04					Х		
K01						Х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination assessment	The pass mark is a minimum of 50% for the final in-class test.
laboratory	non-examination assessment	Regular class attendance. The pass mark is a minimum of 50% for the final in-class test and each post-lab report.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type	Student workload				Unit	
1.			С	Lab	Р	S	h
1.	Scheduled contact hours	15		15			h
2.	Other contact hours (office hours, examination)	2		2			h
3.	Total number of contact hours			34			h
4.	Number of ECTS credits for contact hours	1,4			ECTS		
5.	Number of independent study hours	16			h		
6.	6. Number of ECTS credits for independent study hours		0,6				ECTS
7.	7. Number of practical hours		25				h
8.	8. Number of ECTS credits for practical hours 1,0			ECTS			
9.	9. Total study time		50				h
10.	0.ECTS credits for the course 1 ECTS credit = 25-30 hours of study time2				ECTS		

READING LIST

- Thomas L. Floyd Electronic Devices.
 Robert Boylestad, Louis Nashelsky Electronic Devices and Circuit Theory
 Thomas F. Schubert, Ernest M. Kim Fundamentals of Electronics Book 1 4
 Paul Horowitz The Art of Electronics