

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-111
Course title in Polish	Maszynoznawstwo
Course title in English	Theory of Machines
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	Maintenance and Logistics
Department responsible	Department of Terotechnology and Industrial Laser Systems
Course leader	Prof. dr hab. inż. Bogdan Antoszewski
Approved by	

COURSE OVERVIEW

Course type	basic
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 2
Pre-requisites	None
Examination required (YES/NO)	NO
ECTS value	1

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	15				

LEARNING OUTCOMES

Category of outcome	ategory f outcome code		Corresponding programme outcome code
	W01	They have a basic knowledge of the principles of design of mechanical components and systems.	MiBM_W08
Knowledge	W02	They have a fundamental knowledge of development trends in machine design, manufacture, operation and maintenance.	MiBM_W09
Skille	U01	On completion of this programme students are able to obtain information from the literature, databases and other sources in various languages; they are able to combine, analyse and interpret the information, draw conclusions and formulate and justify opinions.	MiBM1_U03
Skills	U02	They are able to identify and define an engineering prob- lem; they are able to develop specifications that meet the design requirements necessary to solve an engineer- ing problem, as appropriate to their specialism field of study.	MiBM1_U21
Competence	K01	On completion of this programme students understand the need for and know the opportunities of gaining fur- ther professional qualifications (second cycle pro- grammes, third cycle programmes, postgraduate non-de- gree courses, training courses) to enhance their profes- sional, personal and social development.	MiBM1_K01
	K02	Is aware of the social role of a technical university gradu- ate and understands the need to provide public opinion in an understandable manner with information on achievements related to the field of study of Mechanical Engineering	MiBM1_K06

COURSE CONTENT

Type of instruction*	Topics covered
	1. Machines and civilization – classification of machines and theirs role in present
	world, load of machines, structural materials.
	2. Water- machines, impeller and displacement pumps, water turbine and hydro-elec-
	tric power plant - the principle of operations, parameters of work, fundamentals of de-
	sign.
	3. Machines applied in hydraulic systems (gear pumps, axial piston pumps, sliding-
	vane pumps, gerotor pumps), fluid drives, hydraulic and hydrokinetic torque con-
looturo	verter, hydraulic manipulators and servo-motors, hydraulic accumulators.
lecture	4. From windmill to modern wind power plant – evolution of design, compressors and
	fans – classification, bases and parameters of operation, examples.
	5. Internal-combustion engines – general classification, piston engines, power and ef-
	ficiency of engines, feed systems and timing gear systems.
	6. Jet-propulsion motor, jet engines, ramjet, turbo-jets – operation, examples of con-
	struction.
	7. Machines for machining – classification, construction elements of lathes, drills and
	milling machines, examples of construction.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)					
	Oral examination	Written examination	Test	Project	Report	Other

W01		Х		
W02		Х		
U01		Х		
U02		Х		
K01				Х
K02				Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	non-examination as- sessment	The pass mark is a minimum of 50% for all the in-class tests.

OVERALL STUDENT WORKLOAD

	ECTS weighting							
	Activity type	Student workload					Unit	
1	Scheduled contact hours	L	С	Lab	Р	S	h	
1.		15					11	
2.	Other contact hours (office hours, examination)	2					h	
3.	Total number of contact hours			17			h	
4.	Number of ECTS credits for contact hours		0,7			ECTS		
5.	Number of independent study hours	8			h			
6.	6. Number of ECTS credits for independent study hours			0,3				
7.	Number of practical hours	actical hours 0			h			
8.	Number of ECTS credits for practical hours	0,0			ECTS			
9.	Total study time	25			h			
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time	1				ECTS		

READING LIST

- 1. Robert L. Norton, "Design of Machinery, An Introduction to the Synthesis and Analysis of Mechanisms and Machines", 3rd Edition, McGraw Hill Higher Education, 2004,
- 2. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine Component Design", 3rd Edition, John Wiley & Sons, 2000,
- 3. Handbook of Diesel Engines, Publisher: Springer, 2010
- 4. Ernst Mach: The Science Of Mechanics, Metcalf Press, 2007,
- 5. Aerospace Engineering Desk Reference, Publication : Elsevier LTD., 2009,
- 6. Prof. Dr.-Ing. Friedrich-Wilhelm Bach, Dr. Andreas Laarmann, Dipl.-Ing. Thomas Wenz: Modern Surface Technology, 2006 Wiley-VCH Verlag GmbH & Co. KGaA
- 7. K.E. Schneider, V. Belashenko, M. Dratwiński, S. Siegmann, A.Zagorski: Thermal Spraying for Power Generation Components WILLEY-VCH 2006
- 8. W. Włosinski: The joining of advanced materials. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 1999.
- 9. R.E. Hummel: Understanding materials science : history, properties, applications.