

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-109
Course title in Polish	Elektrotechnika
Course title in English	Electrical Engineering
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Automation and Robotics
Course leader	Prof. dr hab. inż. Dariusz Janecki
Approved by	

COURSE OVERVIEW

Course type	programme-specific
Course status	compulsory
Language of instruction	English
Semester of delivery	semester 1
Pre-requisites	mathematics, physic
Examination required (YES/NO)	YES
ECTS value	4

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	30	15			

LEARNING OUTCOMES

Category of outcome	Out- come code	Course learning outcomes	Corresponding programme outcome code
	W01	Have knowledge and understanding of the basic laws of physics related to electric and magnetic fields, properties of electric circuits.	MiBM1_W01 MiBM1_W02
	W02	 Have knowledge of analysing linear electric circuits of direct and sinusoidal current, have knowledge of Kirch- hoff's laws, Thevenin and Norton theorems, have knowledge of mesh analysis, nodal analysis and method of superposition. 	
Knowledge	W03	Have knowledge and understanding of the concept of average, effective and momentary value in electrical signals.	MiBM1_W06
	W04 Have a basic knowledge of circuits with W04 magnetic field and have knowledge of operation of transformers.		MiBM1_W06
	W05	Have a basic knowledge of three-phase circuits, principles of formation of a rotating magnetic field, and under- standing of construction of induction motors.	MiBM1_W06
	W06	Have a basic knowledge of the methods of production, generating and storing electricity.	MiBM1_W06
	U01	Are able to calculate forces interacting between electric charges, parameters of the generated electric field by the system of electric charges.	MiBM1_U01
Skills	U02 Are able to calculate resistance and conductance of a conductor with defined dimensions and determine changes in resistance and conductance as a function of temperature.		MiBM1_U01
	U03	Are able to calculate the values of currents and voltages in circuits of direct and sinusoidal current.	MiBM1_U01
	U04	Are able to calculate power and energy in DC circuits.	MiBM1_U01
	U05	Are able to calculate active, reactive and apparent power in circuits of sinusoidal current, are able to select capaci- tors for reactive power compensation.	MiBM1_U01
Compotonce	K01	Are aware of the way of generating and using electricity has impact on the natural environment.	MiBM1_K02
Competence	K02	Understand the need for running a rational economy of electricity for economic reasons.	MiBM1_K02

COURSE CONTENT

Type of instruction*	Topics covered					
lecture	Basic electrical quantities: electric charge, electric current, Coulomb law, electric field, electric potential and voltage, Ohm's law, resistive conductance and conductance of conductors, dependence of resistance on tempera- ture, work and power of electricity, source of electricity.					
	DC circuits: graphic designations of circuit elements, Kirchhoff's laws, voltage and current sources, unbranched and branched circuits, the principle of sperposition, Wheatstone bridge, Thevenin and Norton theorem, mesh method and nodal analysis of electrical circuits.					
	Electric field: electrostatic induction, Gauss theorem, electric field w conductors, electric field in dielectrics, capacitor structure, capacitance of capacitor, capacitor connections, electric field energy in the capacitor.					

	Magnetic field: magnetic induction, magnetic flux, magnetic field strength, flow law, Biot-Savart law, magnetic properties of materials, magnetization curve, coil induct- ance, mutual inductance, phenomenon of electromagnetic induction, eddy currents.
	Single-phase alternating current electrical circuits: alternating voltage sources value, mean value, RMS value of currents and voltages, analysis of fault circuits RLC elements, phasor charts, instantaneous power, active, reactive and apparent power.
	Symbolic method of solving electric circuits: the basics of arithmetic complex numbers, symbolic form of voltage and current signals, reactant complexation and impedance, active, reactive and apparent power.
	Resonant circuits: series resonance, coil Q factor, resonance in parallel circuit. Magnetically coupled circuits: analysis of circuits with magnetic couplings, examples of coupled circuits, transformers, imperfect transformer.
	Three-phase currents: vector voltage diagrams, star and delta connections of receivers, unbalanced receivers, three-phase current power. Rotating magnetic field, structure and operation of synchronous and asynchronous induction motors.
	Production, processing and storage of electricity.
	Basic electric quantities: electric charge, electric current, Coulomb law, electric field, electric potential and voltage.
	Ohm's law, resistance and conductance, resistivity and conductivity values, dependence of resistance on geometrical dimensions of a conductor, dependence resistance to temperature, work and power of electric current. Calculation of replacement resistance.
	Calculation of voltage, current, wattage and power in branched circuits with one active element.
class	Real voltage and current source, resistive voltage divider, Wheatstone bridge, star and a triangle connection, applying Kirchhoff's laws to calcu- late currents and voltages in circuits with several active sources.
	Use of symbolic method to calculate circuit voltages and currents in alternating cir- cuits, serial and parallel inductance capacitance connection, calculation of equivalent impedance for a system composed of R, L and C elements.
	Power in AC circuits, resonance of currents and voltages, correction of the power factor by the use of compensating capacitors.
	Three-phase circuits, voltage and power in three-phase circuits, magnetic circuits.
*) Please delete	rows in the table above that are not applicable.

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome	Methods of assessment (Mark with an X where applicable)					
code	Oral examination	Written examination	Test	Project	Report	Other
W01 – W06	Х	Х				
U01 – U05			Х			
K01 – K02						Х

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	examination assess- ment	The pass mark is a minimum of 50% for the examination.
class	non-examination assessment	The pass mark is a minimum of 50% for all the in-class tests.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type	Student workload				Unit	
1			С	Lab	Р	S	h
1.	1. Scheduled contact hours	30	15				n
2.	Other contact hours (office hours, examination)	4	2				h
3.	Total number of contact hours			51			h
4.	4. Number of ECTS credits for contact hours			2,0			ECTS
5.	Number of independent study hours 49			h			
6.	6. Number of ECTS credits for independent study hours		2,0				ECTS
7.	7. Number of practical hours		33				h
8.	8. Number of ECTS credits for practical hours		1,3				ECTS
9.	9. Total study time		100				h
10.	ECTS credits for the course 1 ECTS credit = 25-30 hours of study time			4			ECTS

READING LIST

- Thomas L. Floyd, David M Buchla, Principles of Electric Circuits: Conventional Current Version
 James Nilsson, Electric Circuits
 Ravish Singh, Basic Electrical Engineering
 T. R. Kuphaldt, Lessons In Electric Circuits, http://www.ibiblio.org/kuphaldt/electricCircuits/