

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

# **COURSE SPECIFICATION**

| Course code                | M#1-S1-ME-106     |
|----------------------------|-------------------|
| Course title in Polish     | Fizyka Techniczna |
| Course title in English    | Technical Physics |
| Valid from (academic year) | 2019/2020         |

### **GENERAL INFORMATION**

| Programme of study     | MECHANICAL ENGINEERING  |
|------------------------|-------------------------|
| Level of qualification | first-cycle             |
| Type of education      | academic                |
| Mode of study          | full-time               |
| Specialism             | all                     |
| Department responsible | Department of Mechanics |
| Course leader          | dr Małgorzata Błasiak   |
| Approved by            |                         |

#### **COURSE OVERVIEW**

| Course type                   | basic      |
|-------------------------------|------------|
| Course status                 | compulsory |
| Language of instruction       | English    |
| Semester of delivery          | semester 1 |
| Pre-requisites                | None       |
| Examination required (YES/NO) | YES        |
| ECTS value                    | 4          |

| Mode of instruction          | lecture | class | laboratory | project | seminar |
|------------------------------|---------|-------|------------|---------|---------|
| No. of hours<br>per semester | 15      | 15    | 15         |         |         |

# LEARNING OUTCOMES

| Category<br>of outcome | Out-<br>come<br>code | Course learning outcomes                                                                                                                                                                                                                                                                                                                                                                                                   | Corresponding<br>programme<br>outcome code |
|------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Knowledge              | W01                  | Has knowledge in the field of physics, including mechan-<br>ics, kinematics, optics, electricity and magnetism, in par-<br>ticular the knowledge necessary to understand the basic<br>physical phenomena occurring in all types of machines<br>and mechanical devices, including systems enabling the<br>shaping and processing of various types of materials and<br>in vehicles and systems related to weapon technology. | MiBM_W02                                   |
|                        | W02                  | Has elementary knowledge of methods of measuring basic physical, mechanical and electrical quantities, knows the computational methods and IT tools necessary to analyze the results of the experiment.                                                                                                                                                                                                                    | MiBM_W13                                   |
| Skills                 | U01                  | Can use the learned principles and physical laws to solve<br>simple problems in mechanics and machine construction.<br>Can describe simple physical phenomena using mathe-<br>matical equations in the description.                                                                                                                                                                                                        | MiBM1_U01                                  |
|                        | U02                  | Can perform basic measurements of physical, mechanical and electrical quantities.                                                                                                                                                                                                                                                                                                                                          | MiBM1_U11                                  |
| Competence             | K01                  | He can work in a team.                                                                                                                                                                                                                                                                                                                                                                                                     | MiBM1_K04                                  |

# **COURSE CONTENT**

| Type of<br>instruction* | Topics covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lecture                 | Physics as knowledge about the world - from the microworld to the macrocosm. Phys-<br>ics and mathematics. Dimensions of physical quantities, the SI system. History of Phys-<br>ics. Technique as knowledge based on Physics. Fundamentals of mechanics, phenom-<br>ena: thermal, electrical, magnetic, wave, phenomena and optical instruments. Solids,<br>their crystal structure and lattice defects. Fundamentals of the physics of the mi-<br>croworld and special relativity. Nuclear physics, elementary particles. |
| class                   | Solving problems within the scope of the lecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| laboratory              | <ul> <li>Performing 6 laboratory exercises:</li> <li>determination of the viscosity coefficient of liquids based on Stokes's law,</li> <li>determination of the acceleration due to gravity,</li> <li>determination of the density of solids,</li> <li>thermoelectric phenomena in solids,</li> <li>measurement of resistance using the technical method,</li> <li>measurement of the dependence of semiconductor resistance on temperature.</li> <li>Optional:</li> <li>determining the focal length of lenses.</li> </ul> |

\*) Please delete rows in the table above that are not applicable.

## ASSESSMENT METHODS

| Outcome | Methods of assessment (Mark with an X where applicable) |                     |      |        |       |   |  |
|---------|---------------------------------------------------------|---------------------|------|--------|-------|---|--|
| code    | Oral examination                                        | Written examination | Test | Report | Other |   |  |
| W01     |                                                         | Х                   |      |        |       |   |  |
| W02     |                                                         | Х                   |      |        |       |   |  |
| U01     |                                                         |                     | Х    |        |       |   |  |
| U02     |                                                         |                     |      |        | Х     | Х |  |
| K01     |                                                         |                     |      |        |       | Х |  |

## **ASSESSMENT TYPE AND CRITERIA**

| Mode of<br>instruction* | Assessment type               | Assessment criteria                                                                                        |
|-------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------|
| lecture                 | examination assess-<br>ment   | The pass mark is a minimum of 50% for the final in-class test.                                             |
| class                   | non-examination<br>assessment | Attendance. Obtaining at least 50 points from 2 tests.                                                     |
| laboratory              | non-examination<br>assessment | Attendance. Obtaining at least 50 points from each ticket.<br>Obtaining positive ratings from all reports. |

\*) Please delete rows in the table above that are not applicable.

#### **OVERALL STUDENT WORKLOAD**

| ECTS weighting               |                                                                          |                  |      |      |      |      |    |
|------------------------------|--------------------------------------------------------------------------|------------------|------|------|------|------|----|
|                              | Activity type                                                            | Student workload |      |      |      | Unit |    |
| 1                            | Schoolulad contact hours                                                 | L                | С    | Lab  | Р    | S    | h  |
| 1.                           |                                                                          | 15               | 15   | 15   |      |      | 11 |
| 2.                           | Other contact hours (office hours, examination)                          | 4                | 2    | 2    |      |      | h  |
| 3.                           | Total number of contact hours                                            |                  |      | 53   |      |      | h  |
| 4.                           | Number of ECTS credits for contact hours                                 | 2,1              |      |      | ECTS |      |    |
| 5.                           | Number of independent study hours                                        | 47               |      |      | h    |      |    |
| 6.                           | 6. Number of ECTS credits for independent study 1,9                      |                  |      | ECTS |      |      |    |
| 7. Number of practical hours |                                                                          | 64               |      |      |      |      | h  |
| 8.                           | umber of ECTS credits for practical hours 2,6                            |                  | ECTS |      |      |      |    |
| 9.                           | Total study time                                                         | 100              |      | h    |      |      |    |
| 10.                          | ECTS credits for the course<br>1 ECTS credit = 25-30 hours of study time | 4                |      |      | ECTS |      |    |

#### **READING LIST**

- Halliday D., Resnick R., Walker J.: Podstawy Fizyki. PWN 2015.
   Orear J.: Fizyka. WNT 2015.
   Feynman R. P., Leighton R. B., Sands M.: Feynmana wykłady z fizyki. PWN 2019.
   Błasiak M., Takosoglu J.: Materiały do laboratorium z fizyki, PŚk 2018.