

Annex 9 to the Rector's Ordinance No. 35/19 of 12 June 2019

COURSE SPECIFICATION

Course code	M#1-S1-ME-102
Course title in Polish	Analiza matematyczna
Course title in English	Calculus
Valid from (academic year)	2019/2020

GENERAL INFORMATION

Programme of study	MECHANICAL ENGINEERING
Level of qualification	first-cycle
Type of education	academic
Mode of study	full-time
Specialism	all
Department responsible	Department of Manufacturing Engineering and Metrol- ogy
Course leader	dr inż. Paweł Łabędzki
Approved by	

COURSE OVERVIEW

Course type	basic	
Course status	compulsory	
Language of instruction	English	
Semester of delivery	semester 1	
Pre-requisites	None	
Examination required (YES/NO)	YES	
ECTS value	6	

Mode of instruction	lecture	class	laboratory	project	seminar
No. of hours per semester	40	40			

LEARNING OUTCOMES

Category of outcome code		Course learning outcomes	Corresponding programme outcome code
Knowledge	W01	Has knowledge of elementary functions and their proper- ties. He knows the concept of the limit of a function and the asymptote of a function. He knows the basics of dif- ferential calculus of functions of one variable and many variables and its selected applications. He knows the ba- sics of integral calculus of functions of one variable. Knows selected geometric and technical applications of the definite integral	MiBM1_W01
	W02	He knows the basic issues of ordinary differential equa- tions - differential equations with separated variables, lin- ear differential equations.	MiBM1_W01
	U01	Student is able to solve equations and inequalities. He can characterize the properties of functions. He can cal- culate the limits of a function, recognize its asymptotes and determine them. He can calculate the derivative of a function. He can use calculus to study the properties of functions and other technical applications	MiBM1_U01
Skills	U02	Student is able to choose the methods of integration for specific types of functions. He can use the definite inte- gral in selected problems in geometry and mechanics. He can calculate partial derivatives, directional derivative and determine the extremes of functions of two varia- bles. He can solve selected ordinary differential equa- tions - differential equations with separated variables, first-order linear differential equations, linear with con- stant coefficients. Can choose the method (prediction method and constant variation method) to the type of lin- ear differential equation.	MiBM_U01
Competence	K01	He understands the need for continuous training and im- proving his competences in the field of mathematical methods used to solve typical engineering problems. He can complete and improve the acquired knowledge and skills in the field of methods of solving equations and systems of linear equations, matrix calculus, vector cal- culus.	MiBM_K06
	K02	The student is aware of the responsibility for their own work and is able to submit to the rules of teamwork.	MiBM_1K04

COURSE CONTENT

Type of instruction*	Topics covered				
lecture	Functions of one real variable and their basic properties. Complex and inverse func- tions. Overview of elementary functions: polynomials, rational, trigonometric, exponen- tial, logarithmic, hyperbolic, cyclometric functions. Limit and continuity of a function. Function asymptotes. The derivative of a function. Physical and geometric interpreta- tion of the derivative. Differentiation rules. Derivatives of elementary functions. Deriva- tive of the inverse function. Derivative of a complex function. Function differential. Higher order derivatives. Taylor formula. Lagrange's theorem. Application of the first derivative to study the properties of a function (monotonicity, extremes). Study of the course of function variability. Primitive function. Indefinite integral. Integration by parts and substitution methods. Decomposition of a rational function into simple fractions. Integration of rational functions. Integration of irrational and trigonometric functions. Riemman definition of definite integral. Newton-Leibnitz theorem. Geometric and me- chanical applications of definite integrals. Functions of many variables. Partial deriva- tives. Differentiation of a complex function. Higher order derivatives. Differential of func- tions of two variables. Taylor formula. Directional derivative. Gradient. Local extremes of multivariable functions Information about first-order ordinary differential equations. Differential equations with separated variables. Linear differential equations. The method of varying the constant. Prediction method. Linear differential equations with constant coefficients. Prediction method.				
class	Determining the domain of functions. Solving polynomial, rational, exponential, loga- rithmic and trigonometric equations and inequalities. Calculation of function limits. Con- tinuity of functions. Finding the asymptote of a function. Calculating the derivative of a function including the derivative of a complex function. Determining the tangent to the function graph. Approximating a function with a Taylor polynomial. Approximating ex- pressions using the Taylor differential and the Taylor formula. Calculating limits using de L'Hospital rules. Determining the intervals of monotonicity and extremes of func- tions. Study of the course of function variability. Calculation of indefinite integrals by substitution. Calculation of indefinite integrals by parts. Integration of rational functions. Integration of irrational functions. Integration of trigonometric functions. Calculation of definite integral. Calculating the area of a flat area. Applications of definite integrals in geometry and mechanics. Computing the partial derivative of a function of several var- iables. Application of the first order differential to estimate measurement errors. Calcu- lation of the directional derivative. Finding local extremes of functions of two variables. Solving differential equations with separated variables. Solving linear differential equa- tions by the constant variation method. Solving linear differential equations with con- stant coefficients by the prediction method.				

*) Please delete rows in the table above that are not applicable.

ASSESSMENT METHODS

Outcome code	Methods of assessment (Mark with an X where applicable)						
	Oral examination	Written examination	Test	Project	Report	Other	
W01		х					
W02		х					
U01			х				
U02			х				
U03			х				
K01						х	
K02						х	

ASSESSMENT TYPE AND CRITERIA

Mode of instruction*	Assessment type	Assessment criteria
lecture	examination assess- ment	The pass mark is a minimum of 50% for all the in-class tests.
class	non-examination assessment	Class attendance. The pass mark is a minimum of 50% for all the in-class tests.

*) Please delete rows in the table above that are not applicable.

OVERALL STUDENT WORKLOAD

	ECTS weighting						
	Activity type	Student workload				Unit	
1.	Schodulad contact hours	L	С	C Lab		S	_
1.	Scheduled contact hours	40	40				h
2.	Other contact hours (office hours, examination)	4	2				h
3.	Total number of contact hours			86			h
4.	4. Number of ECTS credits for contact hours			1,8			ECTS
5.	5.Number of independent study hours54					h	
6.	6. Number of ECTS credits for independent study hours		2,2				
7.	7. Number of practical hours		50				
8.	8. Number of ECTS credits for practical hours		2,0				ECTS
9.	9. Total study time		100				h
10.	0. ECTS credits for the course 6 1 ECTS credit = 25-30 hours of study time 6				ECTS		

READING LIST

- 1. Gdowski B., Pluciński E., Zadania z rachunku wektorowego i geometrii analitycznej, PWN, Warszawa 1982.
- 2. Hożejowska S., Hożejowski L., Maciąg A., Matematyka w zadaniach dla studiów ekonomicznotechnicznych, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2005.
- 3. Jurlewicz T., Skoczylas Z., Algebra liniowa 1. Definicje, twierdzenia, wzory, Oficyna wydawnicza GiS, Wrocław 2004.
- 4. Tarnowski S., Wajler S., Matematyka w zadaniach cz.II. PŚk. Kielce
- Trajdos T., Matematyka. Cz. 3, WNT, Warszawa 1987.
 Wstęp do matematyki, red. A Płoski, Wydawnictwo Politechniki Świętokrzyskiej, Kielce 1995.
- 7. Skrypt z Algebry: http://wzimk-moodle.tu.kielce.pl/