MODULE SPECIFICATION

Module code	
Module title in Polish	Mechanika budowli 2
Module title in English	Structural Mechanics 2
Module running from the academic year	2016/2017

A. MODULE IN THE CONTEXT OF THE PROGRAMME OF STUDY

Field of study	Civil Engineering
Level of qualification	First cycle (first cycle, second cycle)
Studies profile	Academic (academic/practical)
Mode of study	Full-time (full-time / part-time)
Specialism	
Organisational unit responsible for module delivery	The Department of Mechanics, Metal Structures and Computer Methods
Module co-ordinator	Agnieszka Dudzik, PhD, Eng.
Approved by	Marek Iwański, Professor

B. MODULE OVERVIEW

Module type	Core module (core/programme-specific/elective HES*)
Module status	Compulsory module (compulsory / non-compulsory)
Language of module delivery	English
Semester in the programme of study in which the module is taught	Semester 5
Semester in the academic year in which the module is taught	Winter semester (winter / summer)
Pre-requisites	None (module code/module title, where appropriate)
Examination required	Yes (yes / no)
ECTS credits	5

Mode of instruction	lectures	classes	laboratories	project	others
Total hours per semester	15	30		15	

* elective HES - elective modules in the Humanities and Economic and Social Sciences

C. LEARNING OUTCOMES AND ASSESSMENT METHODS

Module
aimsThe aim of the module is to acquire skills which concern calculating internal forces in
statically indeterminable rod structures with the displacement method; another aim is to
acquire skills of stability analysis and dynamic analysis of rod structures.

Module outcome code	Module learning outcomes	Mode of instruction (l/c/lab/p/ others)	Corresponding programme outcome code	Corresponding discipline- specific outcome code
W_01	A student is familiar with the methods an principles of static analysis, stability analysis and dynamic analysis of rod structures.	l/c/p	B_W07	T1A_W03 T1A_W04 T1A_W07
U_01	A student can determine internal forces in statically indeterminable rods structures with the displacement method.	l/c/p	B_U09	T1A_U03 T1A_U05 T1A_U07 T1A_U07 T1A_U09 T1A_U13 T1A_U14
U_02	A student is able to determine critical values of the load parameter and draw equilibrium paths.	l/c/p	B_U10	T1A_U05 T1A_U09 T1A_U13
U_03	A student can determine the frequency of natural vibration of structure with discrete mass distribution.	l/c/p	B_U11	T1A_U05 T1A_U08 T1A_U09 T1A_U13
K_01	A student can work individually.	c/p	B_K01	T1A_K01 T1A_K03 T1A_K04
K_02	A student is responsible for the reliability of the obtained results.	c/p	B_K02	T1A_K02 T1A_K05 T1A_K07
K_03	A student formulates conclusions and describes the results of his/her own work.	р	B_K04	T1A_K01 T1A_K07

Module content:

1. Topics to be covered in the lectures

No.	Topics	Module outcome code
1-2	The assumption of building mechanics. Comparing the method of forces and displacements. Differential comparison of a rod loaded with constant axial force. The theory of the first and second order. Transformational formulas of the theory of first and second order for a basic rod element.	W_01
3	The concept of system stability. Critical load for single rods. The application of the displacement method to calculate critical values of the load parameter concerning a frame system.	W_01 U_02
4	Equilibrium path. Symmetrical and asymmetrical form of losing stability.	W_01 U_02
5	Basic concepts of building dynamics. The number of dynamic degrees of freedom. Systems with a single degree of freedom (a mechanical oscillator). The equation of a free motion for discrete systems. The frequency of natural vibrations of structure.	W_01 U_03
6	Determining the frequency of natural vibrations concerning beams with discrete mass distribution. Induced vibrations. Harmonic resonance.	W_01 U_03
7	Differential equation of dynamic equilibrium concerning a rod. The equation of amplitudes concerning rod harmonic vibrations. Determining the frequency of natural vibrations of rod. Determining the relationship between the frequency of natural vibrations and the compressive force in orthogonal frames with continuous mass distribution.	W_01 U_03

2. Topics to be covered in the classes

No	Tonics	Module
		code
1-5	The method of displacements in its application to the statics of flat frames.	W_01
	Determining the degree of geometrical indeterminacy. The equilibrium	U_01
	equations of node and a storey. Rigidity matrix of a rigid frame system. Output	K_01
	forces. The system of canonical equations. Samples of frames with orthogonal	K_02
	rod mesh (determining the distributions of internal forces from static loads).	
6-10	The application of the displacement method to calculate critical values of the	W_01
	loading parameter concerning a rigid frame system. Equilibrium path.	U_02
	Symmetrical and asymmetrical form of losing stability.	K_01
		K_02
10-15	Determining rigidity matrix, yielding matrix as well as the frequency of natural	W_01
	vibrations of beams with concentrated masses. Determining the relationship	U_03
	between the frequency of vibration and the compressive force in orthogonal	K_01
	frames with continuous mass distribution.	K_02

3. Topics to be covered in the projects

Project number	Topics		
1	The application of the displacement method to determine internal forces in orthogonal frames.	W_01 U_01 K_01 K_02 K_03	
2	The application of the displacement method to calculate critical values of the loading parameter in a frame system. Determining equilibrium frame.	W_01 U_02 K_01 K_02 K_03	
3	Determining the frequency of natural vibrations for discrete systems (beams).	W_01 U_03 K_01 K_02 K_03	

Assessment methods

Module outcome code	Assessment methods (Method of assessment; for module skills – reference to specific project, laboratory and similar tasks)
W_01	An examination, a test, and a project
U_01	An examination, a test, and a project
U_02	An examination, a test, and a project
U_03	An examination, a test, and a project
K_01	An examination, a test, and a project
K_02	An examination, a test, and a project
K_03	A project

C. STUDENT LEARNING ACTIVITIES

ECTS summary			
	Type of learning activity	Study time/ credits	
1	Contact hours: participation in lectures	15	
2	Contact hours: participation in classes	30	
3	Contact hours: participation in laboratories		
4	Contact hours: attendance at office hours (2-3 appointments per semester)	1	
5	Contact hours: participation in project-based classes	15	
6	Contact hours: meetings with a project module leader	2	
7	Contact hours: attendance at an examination	2	
8			
9	Number of contact hours	65 (total)	
10	Number of ECTS credits for contact hours (1 ECTS credit =25-30 hours of study time)	2.6	
11	Private study hours: background reading for lectures	5	
12	Private study hours: preparation for classes	5	
13	Private study hours: preparation for tests	15	
14	Private study hours: preparation for laboratories		
15	Private study hours: writing reports		
16	Private study hours: preparation for a final test in laboratories		
17	Private study hours: preparation of a project/a design specification	25	
18	Private study hours: preparation for an examination	10	
19			
20	Number of private study hours	60 (total))	
21	Number of ECTS credits for private study hours (1 ECTS credit =25-30 hours of study time)	2.4	
22	Total study time	125	
23	Total ECTS credits for the module	5	
24	(1 ECTS credit =25-30 hours of study time)		
24	Total practice-based hours	43	
25	Number of ECTS credits for practice-based hours (1 ECTS credit =25-30 hours of study time)	1.7	